
332:345 – Linear Systems & Signals – Fall 2018
Exam 2 – Review Topics and Practice Problems – S. J. Orfanidis

• All review topics and sample exam problems for Exam 1. The material is cumulative from the
start of the course, however, the emphasis will be on the material covered in class or assigned
for reading after the first exam. In particular, the focus will be on the following SSTA book
sections and class notes posted on Sakai > Resources > class notes:

– SSTA, Sect. 7.1–7.11, 8.5, 8.6
– set5 - numerical examples and discretization methods for CT systems
– set6 - solved z-transform examples
– i2sp-ch4 - convolution (for DT systems)
– i2sp-ch5 - z-transforms
– i2sp-ch6 - transfer functions (first three sections only)
– i2sp-ch7 - digital filter realizations (first two sections only)

• Finite and infinite geometric series.

• z-transforms, definition, properties, region of convergence (ROC).

• z-transforms of causal periodic sequences.

• Signal generator filters for periodic sequences. Method: choose h(n) to be the periodic se-
quence to be generated, and form the difference h(n)−h(n − P), where P is the period (see
example questions below).

• Inverse z-transforms using long division followed by partial fraction expansion.

• Finding all possible inverse z-transforms x(n) of a given z-transform X(z), based on all pos-
sible ROCs, and identifying the stable and/or causal answers.

• z-domain conditions for stability and causality: (i) stable ROC is the one containing the unit
circle, (ii) causal ROC is the one to the outside of the largest pole circle.

• Reconciling stability with causality approximately when there are poles outside the unit circle.
Method: clip and delay. Estimating the approximation error.

• Digital frequency, Ω = ωT = 2πf/fs, in units of rad/sample, and frequency response H(Ω)
of a discrete-time system. Nyquist interval, −π ≤ Ω ≤ π, or, −fs/2 ≤ f ≤ fs/2.

• Steady-state sinusoidal response of discrete-time LTI systems.

• Sinusoidal and transient response when the input is a causal (or anticausal) sinusoid. Time
constants (e.g., 40-dB or 60-dB) for DT systems and their relationship to pole locations.

• Solving difference equations with initial conditions, e.g., loan amortization, Fibonacci numbers.

• Discretization methods of analog transfer functions, i.e., starting with analog Ha(s), obtain
discrete H(z). Methods: forward/backward Euler, trapezoidal/bilinear, and zero-order hold.

• Zero-order hold has, H(z)= (1− z−1)Z
[
Ha(s)
s

]
. What does the notation Z[G(s)] mean?

• Block diagram realizations, including parallel or cascade connections, and feedback systems.

• Direct (DF-1), canonical (DF-2), and transposed realizations (transposition rules).

• Deriving the transfer function of any block diagram.

• Converting any block diagram into a computational sample-by-sample processing algorithm.
Method: assign temporary variables (internal states) to delay registers.
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Practice Problems

Solutions to the practice problems are not available, but some partial answers are given.

1. Consider the following IIR filter h(n)= anu(n), with |a| < 1. For each of the following three
input signals x(n), determine the corresponding output signal y(n) as a function of n:

(a) x(n)= δ(n− 5)
(b) x(n)= 2δ(n)+3δ(n− 10)
(c) x(n)= u(n)
(d) x(n)= u(−n− 1)

For cases (c,d) determine the corresponding ROC, and show that the outputs are given by the
following expressions,

y(n)= Au(n)+Banu(n)
y(n)= Au(−n− 1)−Banu(n)

with the same constants A,B. Determine A,B in terms of a and interpret these results in
terms of the steady-state sinusoidal response of a filter.

2. Consider a filter h(n) and an input signal x(n) defined in the following figure, where h(n) is
equal to 1 over 0 ≤ n ≤ 3 and x(n) is equal to 1 over 0 ≤ n ≤ 7.

(a) Using any method (e.g., convolution table), but showing all the computational steps, calcu-
late the convolution y(n) of these two sequences and determine the range of the output
index n. Make a sketch of the signal y(n) versus n.

(b) Repeat question (a), for the following case shown below, where h(n) is equal to 1 for
−2 ≤ n ≤ 1 and x(n) is equal to 1 for 2 ≤ n ≤ 9.

(c) Can you deduce the answer for (b) from that of (a) without any further computations?
Explain.

3. Consider a filter h(n) and signal x(n) defined in the figures below.
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(a) Calculate the convolution y(n) of these two sequences and determine the range of the
output index n. Make a sketch of the signal y(n) versus n.

(b) For the above range of n’s, show that y(n) can be expressed by the two alternative ana-
lytical forms:

y(n) = min(12, n− 3)−max(5, n− 5)+1

y(n) = min(5, n− 5)−max(3, n− 12)+1

Explain how these expressions arise from the direct and LTI forms of convolution, and
determine which expression arises from which form.

Ans. 8 ≤ n ≤ 17 , y(n)= [1 2 3 3 3 3 3 3 2 1]

4. Consider the following filter h(n) and input signal x(n):

h(n) = anu(n)
x(n) = (−a)nu(n)

The corresponding output signal turns out to be,

y(n)= an + (−a)n
2

, for n ≥ 0

Show this in two ways: (a) using the convolution summation formula, and (b) working with
z-transforms.

5. Consider a filter with the following causal impulse response:

h(n)=
⎧⎨
⎩

1, n = 0

3(0.5)n, n ≥ 1

Determine the input/output difference equation satisfied by a general input signal x(n) and
output y(n), and cast it in the form,

y(n)= ay(n− 1)+b0x(n)+b1x(n− 1)

What are the values of the coefficients a,b0, b1? [Hint: you may work with z-transforms.]

Ans. y(n)= 0.5y(n− 1)+x(n)+x(n− 1)

6. Consider a filter with the following causal impulse response:

h(n)=

⎧⎪⎪⎨
⎪⎪⎩

2, n = 0

3, n = 1

4(0.5)n, n ≥ 2

Determine the input/output difference equation satisfied by a general input signal x(n) and
output y(n), and cast it in the form,

y(n)= ay(n− 1)+b0x(n)+b1x(n− 1)+b2x(n− 2)

What are the values of the coefficients a,b0, b1, b2? [Hint: you may work with z-transforms.]

Ans. y(n)= 0.5y(n− 1)+2x(n)+2x(n− 1)−0.5x(n− 2)
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7. A filter has the following causal and periodic impulse response:

h(n)= [1, 1, 1, 0︸ ︷︷ ︸
one period

, 1, 1, 1, 0︸ ︷︷ ︸, 1, 1, 1, 0︸ ︷︷ ︸, . . . ]

where the dots represent the repetition of the basic period [1,1,1,0].

(a) Determine the difference equation satisfied by h(n) for n ≥ 0 that generates the above
sequence.

Hint: h(n) = [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, . . . ]

h(n− 4) = [0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, . . . ]

h(n)−h(n− 4) = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . ]

(b) Determine the transfer functionH(z) of this filter and express it as ratio of polynomials
in the variable z−1. Show all work.

(c) Using partial fraction expansions, and performing an inverse z-transform onH(z), show
that an alternative expression for h(n) is:

h(n)= A+ B(−1)n+C sin
(
πn
2

)
, n ≥ 0

and determine the numerical values of A,B,C.

Ans. 1− z−4 = (1− z−1)(1+ z−1)(1− jz−1)(1+ jz−1)

h(n)= h(n− 4)+δ(n)+δ(n− 1)+δ(n− 2)

H(z)= 1+ z−1 + z−2

1− z−4
= 0.75

1− z−1
+ 0.25

1+ z−1
+ 0.25/j

1− jz−1
− 0.25/j

1+ jz−1

h(n)= 0.75+ 0.25(−1)n+0.5 sin
(
πn
2

)
, n ≥ 0

8. Consider the following filter H(z):

H(z)= 0.75(1+ z−2)
1+ 0.5z−2

(a) Draw a rough sketch of its magnitude response |H(ejΩ)| versus frequencyΩ in the range
0 ≤ Ω ≤ π.

(b) The following causal signal is sent to the input of the above filter:

x(n)= 2u(n)+3 sin
(
πn
2

)
u(n)+4 cos

(
πn
2

)
u(n)+5 cos(πn)u(n)

Determine the exact form of the causal steady-state output signal, ysteady(n), i.e., the
output signal after steady state has been reached and the filter transients have died out.
Express ysteady(n) as a sum of real-valued sinusoids. Explain your approach (do not use
z-transforms.)

(c) Approximately, how many time samples does it take for the filter transients to die out
(based on the 60-dB time constant)?

(d) Based on the given H(z), explain why some of the sinusoidal terms of the above input
x(n) can go through this filter, while some other terms are filtered out.

Ans. y(n)= 2u(n)+5 cos(πn)u(n) , poles = ±j√0.5 , n60-dB = ln(0.001)
ln
(√

0.5
) ≈ 20
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9. For each of the following signals, determine its z-transform (if it exists) and the corresponding
ROC:

(a) x(n)= u(n)
(b) x(n)= u(n)−u(n− 1)

(c) x(n)= u(n)+u(−n− 1)

(d) x(n)= (0.5)nu(n)+2nu(−n− 1)

(e) x(n)= 2nu(n)+(0.5)nu(−n− 1)

(f) x(n)= (0.5)nu(n)+2nu(−n)
You may leave the answers in their partial-fraction-expansion forms. If a z-transform does
not exist, please explain why.

10. Transmission channels are usually modeled as linear time-invariant systems. High-speed dig-
ital data transmission always requires the use of channel equalizers at the receiving end. The
equalizer is designed to act as the inverse of the channel and is commonly implemented as an
adaptive filter. Consider a channel described by the following transfer function:

Hch(z)= 1

3
(1− 2.5z−1 + z−2)

and define the equalizer inverse filter, H(z)= 1/Hch(z).

(a) Factor H(z) into its pole factors and perform an inverse z-transform to determine the
corresponding stable (but non causal) impulse response h(n) for all n. What is the cor-
responding ROC?

(b) To make the equalizer filter h(n) usable in real time, it is necessary to make it causal.
This can be accomplished approximately by the procedure discussed in class, that is,
truncating h(n) at some large negative time n = −D, and then delaying the truncated
impulse response by D units of time to make it causal. The truncated approximate im-
pulse response is defined by:

happ(n)=
⎧⎨
⎩
h(n) if n ≥ −D
0 if n < −D

and let e(n)= h(n)−happ(n) be the corresponding approximation error. Determine the
numerical value of D such that the net absolute error be less than 0.01 percent, that is,
determine D from the condition:

∞∑
n=−∞

∣∣h(n)−happ(n)
∣∣

∞∑
n=−∞

∣∣h(n)∣∣
=

∞∑
n=−∞

∣∣e(n)∣∣
∞∑

n=−∞

∣∣h(n)∣∣
≤ 0.0001

[Hint: Use the geometric series to calculate these sums. You should find that these ratios
have the form K(0.5)D, where K is a numerical constant that you need to derive.]

Ans. H(z)= 3

(1− 2z−1)(1− 0.5z−1)
= 4

1− 2z−1
− 1

1− 0.5z−1

h(n)= −4 · 2nu(−n− 1)−(0.5)nu(n) , e(n)= −4 · 2n , n ≤ −D− 1

−D−1∑
n=−∞

4 · 2n = 4(0.5)D ,
−1∑

n=−∞
4 · 2n = 4 ,

∞∑
n=0

(0.5)n= 2

4 · (0.5)D
4+ 2

= 0.0001 ⇒ D = 12.7027 ⇒ D = 13
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11. Consider a stable filter whose frequency response is given by:

H(Ω)= G · 1− e−2jΩ

1+ 0.25e−2jΩ

where Ω = 2πf/fs is the normalized digital frequency in units of radians/sample, and the
factor G helps to normalize the frequency response to unity maximum gain.

(a) Determine the transfer function H(z). Determine the pole/zero pattern of H(z) and
show it on the z-plane.

(b) Perform an inverse z-transform onH(z) and derive an analytical expression for the (sta-
ble) impulse response h(n) of this filter, and express it in real-valued form.

(c) Based on the pole/zero pattern ofH(z), draw a rough sketch of the magnitude response
|H(Ω)|2 versus 0 ≤ Ω ≤ π. Determine the frequency, say Ω0, at which the magnitude
response is maximum, and then determine the numerical value of G in order for this
maximum to be unity.

Ans. G = 0.375 , H(z)= −1.5+ 0.9375

1− 0.5jz−1
+ 0.9375

1+ 0.5jz−1

h(n)= −1.5δ(n)+1.875(0.5)ncos
(
πn
2

)
u(n)

12. Determine the causal inverse z-transform of the following:

F(z)= 19− 9z−1 − 9z−2 + 4z−3

(1− 0.5z−1)(1− 0.8z−1)
= 19− 9z−1 − 9z−2 + 4z−3

1− 1.3z−1 + 0.4z−2

You must use long division to reduce the order of the numerator (from order 3 to order 1) and
then apply partial fraction expansion.

Ans. F(z)= 10+ 10z−1 + 5

1− 0.5z−1
+ 4

1− 0.8z−1

f(n)= 10δ(n)+10δ(n− 1)+5(0.5)nu(n)+4(0.8)nu(n)

13. Consider the filter structures (A) and (B) shown below:

(a) Explain why they are the transposes of each other (and hence, they have the same transfer
function.) Note that these structures are of the feedback type and do not fall under the
usual categories of direct or canonical realizations.

(b) Working with either structure, determine their common transfer function H(z) and ex-
press it as a ratio of two polynomials in z−1. Show all work.
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(c) After you get H(z), draw its direct, canonical, and transposed realization forms, and for
each form, state the corresponding sample processing algorithm.

(d) Draw a rough sketch of the magnitude response |H(ejΩ)| based on the pole/zero pattern
of H(z).

(e) Determine the (stable) impulse response h(n) of this filter for all n, and express it in
real-valued form.

(f) For both structures (A) and (B), write the corresponding sample processing algorithms.
Only the indicated variables x, y, v1, v2, v0 must be used in stating these algorithms. Make
sure the computational steps are listed in the right order.

(g) Working first with structure (A) and then with structure (B), iterate its sample processing
algorithm on the input signal x = [8,6,4,2] and compute the corresponding output
samples y, as well as the quantities v0, v1, v2, at each time instant, that is, fill the entries
of the following tables for cases (A) and (B):

x v1 v2 v0 y
8 0 0 ∗ ∗
6 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗

x v1 v2 v0 y
8 0 0 ∗ ∗
6 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗

Note that the initial contents of v1, v2 have been set to zero as usual.

Ans. H(z)= 1− 0.5z−1

1+ 0.25z−2
=

1
2(1+ j)

1− 0.5jz−1
+

1
2(1− j)

1+ 0.5jz−1

h(n)= (0.5)n
[

cos
(
πn
2

)
− sin

(
πn
2

)]
u(n)

for each x do,
v0 = v1 − 0.5v2

y = x+ v0

v1 = 0.5(v0 − 0.5v2)
v2 = y

case (A)

% verify with MATLAB for (A):
%
% v1=0; v2=0; V = [];
% x = [8 6 4 2]’;
%
% for i=1:4,
% v0 = v1 - 0.5*v2;
% y = x(i) + v0;
% V = [V; x(i), v1, v2, v0, y]; % save results for printing
% v1 = 0.5*(v0 - 0.5*v2);
% v2 = y;
% end
%
% x v1 v2 v0 y
% ---------------------------------
% 8.0 0.0 0.0 0.0 8.0
% 6.0 0.0 8.0 -4.0 2.0
% 4.0 -4.0 2.0 -5.0 -1.0
% 2.0 -3.0 -1.0 -2.5 -0.5
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14. A digital filter has the following infinite causal impulse response:

hn =
[
1,2,4,6,10,16,26, . . .

]
, n ≥ 0

where starting with the fourth entry, each entry is the sum of the two previous ones, e.g.,
6 = 4+ 2, 10 = 6+ 4, 16 = 10+ 6, etc. Note that this is not quite the Fibonacci series—it is
generated with different initial conditions.†

(a) Determine the transfer functionH(z) of this filter and express it as a ratio of two second-
order polynomials in z−1.

Hint: hn =
[

1, 2, 4, 6, 10, 16, 26, . . .
]

hn−1 =
[

0, 1, 2, 4, 6, 10, 16, 26, . . .
]

hn−2 =
[

0, 0, 1, 2, 4, 6, 10, 16, 26, . . .
]

hn − hn−1 − hn−2 =
[

1, 1, 1, 0, 0, 0, 0, 0, 0, . . .
]

(b) Perform a causal inverse z-transform on H(z) and derive a closed-form analytical ex-
pression for the sequence hn, n ≥ 0. Verify that your expression generates the above
sequence for n = 0,1,2,3,4,5,6.

(c) Show that in the limit n→∞, the ratio hn/hn−1 converges to the golden ratio, that is,

lim
n→∞

hn
hn−1

= φ = 1+√5

2
= 1.6180 · · ·

Ans. H(z) = 1+ z−1 + z−2

1− z−1 − z−2
= 1+ z−1 + z−2

(1− p1z−1)(1− p2)

= −1+ R1

1− p1z
+ R2

1− p2z−1

p1,2 = 1±√5

2

R1,2 = 1± 1√
5

hn = −δ(n)+R1pn1 u(n)+R2pn2 u(n) , n ≥ 0

% verify with MATLAB (not asked):

p1 = (1 + sqrt(5))/2; p2 = (1 - sqrt(5))/2;
R1 = 1 + 1/sqrt(5); R2 = 1 - 1/sqrt(5);

n = (0:6); h = -(n==0) + R1*p1.^n + R2*p2.^n;

[n;h]
0 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000

1.0000 2.0000 4.0000 6.0000 10.0000 16.0000 26.0000

†you may look up “golden ratio” on Wikipedia
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15. A digital filter has the following infinite causal impulse response:

hn =
[
10, 5, 6.25, 5.9375, 6.015625, . . .

]
, n ≥ 0

where starting with the third entry, each entry is calculated by taking 3/4 of the previous entry
and 1/4 of the entry before that, i.e., for n ≥ 2,

hn = 3

4
hn−1 + 1

4
hn−2

so that,

6.25 = 3

4
5+ 1

4
10

5.9375 = 3

4
6.25+ 1

4
5

6.015625 = 3

4
5.9375+ 1

4
6.25 , etc.

(a) Determine the transfer functionH(z) of this filter and express it as a ratio of polynomials
in z−1 of degrees up to two. Moreover, factor the denominator polynomial into its root
factors.

(b) Using partial fraction expansions, perform a causal inverse z-transform on H(z) and
derive a closed-form analytical expression for the sequence hn, n ≥ 0. Verify that your
expression generates the above sequence for n = 0,1,2,3,4.

(c) Show that in the limit n→∞, the sequence converges to the number, lim
n→∞hn = 6.

Solution. hn =
[
10.00, 5.00, 6.25, 5.9375, 6.015625, . . .

]
hn−1 =

[
0.00, 10.00, 5.00, 6.25, 5.9375 , . . .

]
hn−2 =

[
0.00, 0.00, 10.00, 5.00, 6.25 , . . .

]

hn − 3

4
hn−1 − 1

4
hn−2 =

[
10, − 2.5, 0, 0, 0 , . . .

]
, or,

hn − 3

4
hn−1 − 1

4
hn−2 = 10δ(n)−2.5δ(n− 1)

H(z)−3

4
z−1H(z)−1

4
z−2H(z)= 10− 2.5z−1

H(z)= 10− 2.5z−1

1− 3
4z−1 − 1

4z−2
= 10− 2.5z−1

(1− z−1)(1+ 0.25z−1)
= 6

1− z−1
+ 4

1+ 0.25z−1

hn = 6u(n)+4(−0.25)nu(n)

16. A digital filter is defined by the following block diagram:
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(a) What is the transfer function H(z) of this filter? Show all work in deriving it.

(b) Let v1, v2, v3 denote the contents of the three delays that appear in this realization. With
the help of these variables, state the sample processing algorithm for computing each
output sample y from each input sample x. Only the variables v1, v2, v3, x, ymust appear
in the algorithm.

(c) For the following input signal x = [8,6,4,2,1], iterate the above sample processing
algorithm to compute the corresponding output samples, and in the process fill in the
entries of the following table:

x v1 v2 v3 y
8 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ −4

∗ −6 ∗

To help you check your answer, a couple of table entries are given.

Ans. H(z)= 1− z−2 − z−3

1+ z−1 − 0.5z−3
,

for each x do,
y = x+ v1

v1 = v2 − y
v2 = v3 − x
v3 = 0.5y − x

% verify with MATLAB:
%
% b = [1 0 -1 -1]; a = [1 1 0 -0.5];
% x = [8 6 4 2 1]’;
% y = filter(b,a,x);
% [x,y]
%
% v = [0 0 0]; V = v;
% for n=1:5,
% [y(n),v] = filter(b,a,x(n),v);
% V = [V; v’]; % the vi’s are the rows of V
% end
%
% x v1 v2 v3 y
% ---------------------------
% 8 0 0 0 8
% 6 -8 -8 -4 -2
% 4 -6 -10 -7 -2
% 2 -8 -11 -5 -6
% 1 -5 -7 -5 -4
% -3 -6 -3

17. Consider the following filter with 4th degree numerator and 3d degree denominator:

H(z)= 1+ z−2 + z−4

1+ z−1 − 0.5z−3

(a) Draw the transposed realization of this filter. Let v1, v2, v3, v4 denote the contents of
the four delays that appear in this realization. With the help of these variables, state
the sample processing algorithm for computing each output sample y from each input
sample x. Only the quantities x, v1, v2, v3, v4, y must appear in the algorithm.
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(b) For the input signal x = [8,7,6,5,4,3,2], iterate the transposed sample processing
algorithm to compute the corresponding output samples, and in the process fill in the
entries of the following table:

x v1 v2 v3 v4 y
8 ∗ ∗ ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗

Ans.

for each x do:
y = x+ v1

v1 = v2 − y
v2 = v3 + x
v3 = v4 + 0.5y
v4 = x

% MATLAB verification
%
% v = zeros(1,4); V=[];
% x = [8 7 6 5 4 3 2];
%
% for i = 1:7,
% y = x(i) + v(1);
% V = [V; [x(i),v,y]]; % save results for printing
% v(1) = v(2) - y;
% v(2) = v(3) + x(i);
% v(3) = v(4) + 0.5*y;
% v(4) = x(i);
% end
%
% x v1 v2 v3 v4 y
% ---------------------------------------------
% 8.0 0.0 0.0 0.0 0.0 8.0
% 7.0 -8.0 8.0 4.0 8.0 -1.0
% 6.0 9.0 11.0 7.5 7.0 15.0
% 5.0 -4.0 13.5 14.5 6.0 1.0
% 4.0 12.5 19.5 6.5 5.0 16.5
% 3.0 3.0 10.5 13.3 4.0 6.0
% 2.0 4.5 16.3 7.0 3.0 6.5

18. For the same filter H(z) of the previous problem, draw the canonical (DF-2) realization em-
ploying four delays. Write down the corresponding sample processing algorithm, and iterate
it on the same input signal as above, and in the process fill in the entries of the following table:

x w0 w1 w2 w3 w4 y
8 ∗ ∗ ∗ ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗ ∗
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wherew1,w2,w3,w4 are the contents of the four delays, andw0 is the signal running between
the input and output adders of the canonical realization.

Ans.

for each x do:
w0 = x−w1 + 0.5w3

y = w0 +w2 +w4

w4 = w3

w3 = w2

w2 = w1

w1 = w0

% verify with MATLAB:
% x = [8, 7, 6, 5, 4, 3, 2]’;
% w1=0; w2=0; w3=0; w4=0; W = [];
%
% for i=1:7
% w0 = x(i) - w1 + 0.5*w3;
% y = w0 + w2 + w4;
% W = [W; x(i), w0, w1, w2, w3, w4, y]; % save results for printing
% w4 = w3;
% w3 = w2;
% w2 = w1;
% w1 = w0;
% end
%
% x w0 w1 w2 w3 w4 y
% -----------------------------------------------------
% 8.0 8.0 0.0 0.0 0.0 0.0 8.0
% 7.0 -1.0 8.0 0.0 0.0 0.0 -1.0
% 6.0 7.0 -1.0 8.0 0.0 0.0 15.0
% 5.0 2.0 7.0 -1.0 8.0 0.0 1.0
% 4.0 1.5 2.0 7.0 -1.0 8.0 16.5
% 3.0 5.0 1.5 2.0 7.0 -1.0 6.0
% 2.0 -2.0 5.0 1.5 2.0 7.0 6.5

19. Consider a filter structure connected in a negative feedback configuration as shown below:

(a) Write the sample processing algorithm for computing each output sample y from each
input sample x. Only the indicated variables, x, v0, v1,w0,w1, y, must be used in stating
the algorithm. Make sure that the computational steps are listed in the right order. [Hint:
update w1, v1 last.]

(b) Iterate the sample processing algorithm of part (a) on the input signal, x = [4, 2, −2, −1, 2],
and compute the corresponding output samples y, as well as the quantities v0, v1,w0,w1,
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and fill the starred entries of the following table,

x v0 v1 w0 w1 y
4 ∗ 0 ∗ 0 ∗
2 ∗ ∗ ∗ ∗ ∗

−2 ∗ ∗ ∗ 4 ∗
−1 ∗ −5 ∗ ∗ −1

2 ∗ ∗ ∗ ∗ ∗

Note that the initial contents of v1,w1 have been set to zero as usual. Three additional
entries have been given so that you may check the progress of your work.

(c) Determine the closed-loop transfer function H(z) from the input x(n) to the output
y(n), and express it as a ratio of two polynomials in z−1. Show all work.

Ans.

for each x do,
w0 = v1 + 0.5w1

y = 0.5(w0 +w1)
v0 = x− y
v1 = v0

w1 = w0

x v0 v1 w0 w1 y
---------------------------------
4 4 0 0 0 0
2 0 4 4 0 2
-2 -5 0 2 4 3
-1 0 -5 -4 2 -1
2 5 0 -2 -4 -3

% Matlab code for verification (not asked),
% -----------------------------------------
x = [4 2 -2 -1 2]’;
v1 = 0; w1 = 0; Y = [];
for i=1:length(x)

w0 = v1+0.5*w1;
y = 0.5*(w0+w1);
v0 = x(i)-y;
Y = [Y; x(i), v0, v1, w0, w1, y];
v1 = v0;
w1 = w0;

end

G(z) = 0.5z−1(1+ z−1)
1− 0.5z−1

= transfer function along the upper line

H(z) = G(z)
1+G(z) =

0.5z−1(1+ z−1)
1− 0.5z−1

1+ 0.5z−1(1+ z−1)
1− 0.5z−1

= 0.5z−1(1+ z−1)
1+ 0.5z−2

= closed-loop

20. Consider the cascaded system shown below:
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where the two filters have impulse responses:

h1(n)= (0.5)nu(n) , h2(n)= δ(n− 2)−δ(n− 3)

The input signal is a unit-step, that is, x(n)= u(n). Determine the overall output signal y(n).
[Hint: Some approaches are simpler than others.]

21. The unit-step response of an unknown causal and stable discrete-time LTI system is,

u(n) −→ H −→ 4u(n)−(0.5)nu(n)
(a) Working exclusively in the time domain and invoking linearity and time invariance , de-

termine an analytical expression for the impulse response h(n) of this system.

[Hint: δ(n)= u(n)−u(n− 1)]

(b) Working in the z-domain, determine the transfer functionH(z), then perform an inverse
z-transform to determine h(n) again. Do your answers in parts (a,b) match?

Ans. h(n)= 2δ(n)+(0.5)nu(n)

22. Determine the input signal x(n) that would cause the output signal y(n) from an LTI system
as shown below,

x(n)= ? −→ H(z)= 3− z−1

1− 0.5z−1
−→ y(n)= (0.5)nu(n)+5(−0.5)nu(n)

Determine also the stable impulse response h(n) of this system.

Ans. x(n)= 2(−0.5)nu(n)

23. For any stable and causal continuous-time system (i.e., with poles strictly in the left-hand
s-plane), show that its 60-dB and 40-dB time constants are related by

τ60 = 1.5τ40

Show that the same result is valid for stable and causal discrete-time systems (i.e., with poles
strictly inside the unit circle.)

24. Consider the analog system,

Ha(s)= 6

(s+ 2)(s+ 3)

It is desired to obtain a discretized version of this system with a sampling time interval T.
For each of the following two discretization methods, determine (in terms of T) the discrete-
time transfer functionH(z) and corresponding impulse response h(n) that approximate this
analog system,

(a) Impulse invariance method, which defines, h(n)= T·ha(nT).
(b) Zero-order hold method.
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For both cases, replace z = esT in H(z) and take the limit T → 0, and verify that, H(z)→
Ha(s).

Ans. H(z)= 6T(e−2T − e−3T)z−1

1− (e−2T + e−3T)z−1 + e−5Tz−2
= impulse invariance

h(n)= 6T
(
e−2nT − e−3nT)u(n)

H(z)= (1+ 2e−3T − 3e−2T)z−1 + (e−5T + 2e−2T − 3e−3T)z−2

1− (e−2T + e−3T)z−1 + e−5Tz−2
= ZOH

h(n)= 3
(
1− e2T)[δ(n)−e−2nTu(n)

]− 2
(
1− e3T)[δ(n)−e−3nTu(n)

]

25. Consider the analog system,

Ha(s)= 9

s(s+ 3)

It is desired to obtain a discretized version of this system with a sampling time interval T.
For each of the following two discretization methods, determine (in terms of T) the discrete-
time transfer functionH(z) and corresponding impulse response h(n) that approximate this
analog system,

(a) Impulse invariance method, which defines, h(n)= T·ha(nT).
(b) Zero-order hold method.

For both cases, replace z = esT in H(z) and take the limit T → 0, and verify that, H(z)→
Ha(s).

Ans. H(z)= 3T(1− e−3T)z−1

(1− z−1)(1− e−3Tz−1)
= 3T

1− z−1
− 3T

1− e−3Tz−1

h(n)= 3T
(
1− e−3nT)u(n)

H(z)= (3T − 1+ e−3T)z−1 + (1− 3Te−3T − e−3T)z−2

(1− z−1)(1− e−3Tz−1)

h(n)= (e3T − 3T − 1)δ(n)+3Tu(n)−(e3T − 1)e−3nTu(n)

26. Consider the analog system,

Ha(s)= 2 · s+ 3

s+ 2

It is desired to obtain a discretized version of this system with a sampling time intervalT. Using
the zero-order hold method, determine (in terms ofT) the discrete-time transfer functionH(z)
and corresponding impulse response h(n) approximating this analog system,

Replace z = esT in H(z) and take the limit T → 0, and verify that, H(z)→ Ha(s).

Ans. H(z)= 2+ (1− 3e−2T)z−1

1− e−2Tz−1

h(n)= 2δ(n)+(1− e2T)[δ(n)−e−2nTu(n)
]
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27. Determine the causal impulse response h(t) of the following system (where a,b are positive
and a 
= b):

H(s)= 1

(s+ a)(s+ b)
Determine h(t) also in the case when a = b.

28. Show that the zero-order-hold discretized version H(z) of the transfer function H(s) of the
previous problem (with a 
= b) has the following form:

H(z)= A(1− z−1)
1− e−aTz−1

+ B(1− z−1)
1− e−bTz−1

+C

where T is the sampling time interval. Determine the coefficients A,B,C in terms of a,b.

29. Consider the analog transfer function:

Ha(s)= s+ 4

s+ 2

It is desired to discretize Ha(s) using a zero-order hold with sampling time interval T chosen
such that,

e−2T = 0.8

(a) Show that its zero-order-hold discretization has the form:

H(z)= 1− 0.6z−1

1− 0.8z−1

(b) Determine an expression for the corresponding causal impulse response h(n), for n ≥ 0.

(c) Draw the transposed realization of H(z) and state its sample processing algorithm ex-
pressed in terms of the variables x, v1, y, where x, y are the input and output samples,
and v1 is the content of the delay that appears in this realization.

(d) Iterate the sample processing algorithm of part (c) on the input signal, x = [5, 4, 3, 2],
and compute the corresponding output samples y, as well as v1, and fill the starred
entries of the following table,

x v1 y
5 0 ∗
4 ∗ ∗
3 ∗ ∗
2 ∗ ∗

Ans. H(z)= 1− 0.6z−1

1− 0.8z−1
= 0.75+ 0.25

1− 0.8z−1

h(n)= 0.75δ(n)+0.25(0.8)nu(n)

x v1 y
-------------------
5 0.00 5.00
4 1.00 5.00
3 1.60 4.60
2 1.88 3.88
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