
332:345 – Linear Systems & Signals – Fall 2018

Set 7 – Notch Filter Audio Demo – S. J. Orfanidis

Notch Filter Design by Pole-Zero Placement

A simple way to design a filter with a notch at some frequency ω0 (rads/sample) is to construct a
transfer function with a zero at z0 = ejω0 , and a pole behind the zero at p0 = Rejω0 , with 0 < R < 1.
The complex conjugates z∗0 , p∗0 must also be included to make the filter coefficients real-valued. The
geometry is depicted below.

The transfer function is constructed by,

H(z)= G (1− ejω0z−1)(1− e−jω0z−1)
(1−Rejω0z−1)(1−Re−jω0z−1)

= G 1− 2 cos(ω0) z−1 + z−2

1− 2R cos(ω0) z−1 +R2z−2
(1)

The gain factor G may be adjusted to normalize the transfer function to unity gain at DC, that
is, setting z = 1 and requiring H(z)

∣∣
z=1 = 1, we obtain,

H(1)= G 1− 2 cos(ω0)+1

1− 2R cos(ω0)+R2
= 1 ⇒ G = 1− 2R cosω0 +R2

2(1− cosω0)
(2)

Thus, the transfer function and filter coefficients are,

H(z)= b0 + b1z−1 + b2z−2

1+ a2z−1 + a2z−2
,

b = [b0 , b1 , b2]= [G , −2G cosω0 , G]
a = [1 , a1 , a2]= [1 , −2R cosω0 , R2]

(3)

The basic tradeoff for such design is that as the pole radius R gets closer to the unit circle
(from inside), the notch becomes sharper, but at the expense of a longer transient response. This
tradeoff can be quantified by the following approximate formulas for the 3-dB width Δf in Hz and
the effective 60-dB time constant τeff in seconds, where fs is the sampling rate in Hz:

Δf = fs
π
(1−R) , τeff = 1

fs
ln(10−3)

ln(R)
≈ 1

fs
3 ln(10)

1−R ⇒ τeffΔf = 3 ln(10)
π

≈ 2.2 (4)

where the approximation is valid for R � 1, very near 1. Eq. (4) is also an example of the uncertainty
principle for time-bandwidth product.

An exact design with notch frequency f0 and arbitrary 3-dB notch widthΔf can be found in ch.11
of the I2SP text, and is given by,

H(z)=
(

1

1+ β

)
1− 2 cosω0 z−1 + z−2

1− 2

(
cosω0

1+ β

)
z−1 +

(
1− β
1+ β

)
z−2

(5)

where

ω0 = 2πf0
fs

, Δω = 2πΔf
fs

, β = tan
(
Δω

2

)
(6)

1

The notching behavior of Eq. (1) can be understood geometrically by looking at the frequency
response of the filter, obtained by replacing z by ejω in H(z),

H(ω)= G
(z− ejω0)(z− e−jω0)
(z−Rejω0)(z−Re−jω0)

∣∣∣∣∣
z=ejω

⇒ |H(ω)| = G · |e
jω − z0|

|ejω − p0| ·
|ejω − z∗0 |
|ejω − p∗0 |

It can be seen from the above figure that, if R is very near the unit circle, then the pole p0 is very
near the zero z0, and therefore, as soon as the movable point ejω on the unit circle moves away from
the immediate vicinity of the zero, the distances from ejω to z0 and to p0 become practically equal,
i.e., |ejω − z0| ≈ |ejω − p0|, and similarly, |ejω − z∗0 | ≈ |ejω − p∗0 |, and the magnitude response
becomes constant as a function of frequency.

Sample-by-Sample Processing

Such filters may be realized in their canonical form (also known as direct-form-2) using linear delay-
line buffers as shown below:

for each x do:
w0 = x− a1w1 − a2w2

y = b0w0 + b1w1 + b2w2

w2 = w1

w1 = w0

(7)

The transposed (of the canonical) form is also used,

for each x do:
y = b0x+ v1

v1 = b1x− a1y + v2

v2 = b2x− a2y

(8)

These realizations were discussed in class and a small numerical example was given.

Audio Demonstration

In this audio demonstration, we use the approximate pole/zero placement design of Eq. (1), and
implement it both in the canonical and the transposed realizations. The input signal is chosen to
be a sinusoid of frequency f0 = 2 kHz with duration of one second and amplitude 2, sandwiched
between two sinusoids each of frequency f1 = 1 kHz and duration also of one second and unity
amplitude. The sampling rate is chosen to be 8 kHz. The input signal is defined explicitly as follows
over the period 0 ≤ t ≤ 3 sec, and then sampled at the rate fs, that is, replacing t by tn = nTs,
n = 0,1,2, . . . , where Ts = 1/fs,

x(t)=

⎧⎪⎪⎨
⎪⎪⎩

cos(2πf1t), 0 ≤ t < 1 sec

2 cos(2πf0t), 1 ≤ t < 2 sec

cos(2πf1t), 2 ≤ t < 3 sec

2

The notch filter is designed to have a notch at f0, so it will filter out the middle sinusoid. Thus,
before filtering, one hears three one-second tones of frequencies 1, 2, 1 kHz, while after filtering,
the middle sinusoid is wiped out by the notch filter and one hears silence during the middle second
(after the transients die out). By adjusting the value of R, we can make the transients audible.

The figures below show the input and output signals, as well as the magnitude response of the
notch filter designed for the two values R = 0.95 and R = 0.995. The corresponding time constants
and 3-dB widths are as follows,

R = 0.950 , τeff = 0.01723 sec , Δf = 127.3240 Hz

R = 0.995 , τeff = 0.17230 sec , Δf = 12.73240 Hz

The tradeoff between τeff and Δf is evident. Indeed, because 1−R is equal to 0.05 and 0.005 in
the two cases, the time constant is increased by a factor of 10 while the 3-dB width is decreased by
a factor of 10.

0 1 2 3
−3

−2

−1

0

1

2

3
Input Signal

t (sec)

x(
t)

0 1 2 3
−3

−2

−1

0

1

2

3
Notch Filter Output, R = 0.950

t (sec)

y(
t)

0 1 2 3
−3

−2

−1

0

1

2

3
Notch Filter Output, R = 0.995

t (sec)

y(
t)

3

0 1 2 3 4
0

0.5

1

magnitude response, R = 0.950

f (kHz)

|H
(f

)|
2

 filter
 f

1
, f

0
 3−dB width

0 1 2 3 4
0

0.5

1

magnitude response, R = 0.995

f (kHz)

|H
(f

)|
2

 filter
 f

1
, f

0
 3−dB width

MATLAB Implementation

% notchex.m - notch filter audio demo

clear all;

fs = 8000; % sampling rate in samples/sec, or, Hz
Ts = 1/fs; % Ts = 1/fs = 1/8000 = 0.125 msec
Tot = 3; % total duration 3 sec (3*8000 = 24000 samples)

t = 0 : Ts : Tot; % sampled time is steps of Ts = 1/fs

f1 = 1000; % 1 kHz
f0 = 2000; % 2 kHz

x = cos(2*pi*f1*t) .* (t<1) + ... % sampled input signal
2*cos(2*pi*f0*t) .* (t>=1 & t<2) + ...
cos(2*pi*f1*t) .* (t>=2);

R = 0.995; c0 = cos(2*pi*f0/fs); % may change R to other values

neff = 3*log(10)/(1-R); % 60-dB time constant in samples
num2str(neff);
teff = neff/fs % 60-dB time constant in seconds

dw = 2*(1-R); % 3-dB width in rads/sample
df = fs*dw/2/pi % 3-dB width in Hz

G = (1 - 2*R*c0 + R^2)/(1-c0)/2; % gain factor, G
a1 = -2*R*c0; a2 = R^2; % denominator coefficients a1,a2
b0 = G; b1 = -2*c0*G; b2 = G; % numerator coefficients, b0,b1,b2

% compute output using canonical realization
% --

w1=0; w2=0; % initialize delay registers
for n = 1:length(x) % see algorithm in Eq.(7) above

w0 = x(n) - a1*w1 - a2*w2;
y(n) = b0*w0 + b1*w1 + b2*w2;
w2 = w1;
w1 = w0;

end

4

sound(x,fs) % listen to the input
% pause; % press any key to continue in command window
sound(y,fs) % listen to the output

% compare with output from transposed realization
% ---

v1=0; v2=0; % initialize delay registers
for n = 1:length(x) % see algorithm in Eq.(8) above

yt(n) = b0*x(n) + v1; % use different symbol for y(n)
v1 = b1*x(n) - a1*yt(n) + v2;
v2 = b2*x(n) - a2*yt(n);

end

% compare with output from the built-in FILTER function
% ---

b = [b0,b1,b2]; % filter coefficient vectors
a = [1,a1,a2];
yf = filter(b,a,x); % run FILTER with zero initial conditions

norm(y-yt) % should be zero, theoretically
norm(yt-yf) % should be zero, theoretically

% plot input and output signals x(t) and y(t)
% ---

figure; plot(t,x,’b-’);
yaxis(-3,3, -3:3); grid;
xaxis(0,3, 0:3);
title(’Input Signal’);
xlabel(’{\itt} (sec)’);
ylabel(’{\itx}({\itt})’);

% print -depsc notchx

figure; plot(t, y, ’b-’);
yaxis(-3,3, -3:3); grid;
xaxis(0,3, 0:3);
title([’Notch Filter Output, {\itR} = ’,num2str(R,’%5.3f’)]);
xlabel(’{\itt} (sec)’);
ylabel(’{\ity}({\itt})’);

% print(’-depsc’,[’y’,num2str(1000*R),’.eps’]);

% plot magnitude response |H(f)| vs. f
% ------------------------------------

f = linspace(0,4000,4001); % frequency in Hz
w = 2*pi*f/fs; % frequency in rads/sample

H = abs(freqz(b,a,w)).^2; % use FREQZ

f10 = [f1,f0]; % sinusoid frequencies
w10 = 2*pi*f10/fs;
H10 = abs(freqz(b,a,w10)).^2; % response at sinusoid frequencies

df = fs/pi*(1-R); % 3-dB width in Hz

5

fL = f0 - df/2; % approximate left/right 3-dB frequencies
fR = f0 + df/2;

figure;
plot(f/1e3,H, ’b-’, ’linewidth’,2); hold on % plot in units of kHz
plot(f10/1e3,H10, ’r.’, ’markersize’,23);
plot([fL,fR]/1000, [1/2,1/2], ’r-’, ’linewidth’,2);
title([’magnitude response, {\itR} = ’,num2str(R,’%5.3f’)]);
xlabel(’{\itf} (kHz)’);
ylabel(’|{\itH}({\itf})|^2’);
xaxis(0,4, 0:1:4);
yaxis(0,1.1, 0:0.5:1); grid;
legend(’ filter’, ’ {\itf}_1, {\itf}_0’, ’ 3-dB width’, ’location’,’se’)

% print(’-depsc’,[’H’,num2str(1000*R),’.eps’]);

6

