
332:345 – Linear Systems & Signals – Fall 2018

Set 1 – Convolution Examples – S. J. Orfanidis

The convolution between two signals h(t) and x(t), denoted by y(t)= h(t)∗x(t), is defined by
the following integrals,

y(t)=
∫∞
−∞
h(t′)x(t − t′)dt′ =

∫∞
−∞
h(t − t′)x(t′)dt′ (1)

In this set we discuss a number of convolution examples done by the method presented in class,
that is, first determining the range of the output time t, and then, determining the proper limits
of integration over t′. These limits depend on the value of t and whether one uses the left or the
right expression in Eq. (1). This method usually results in a unified expression that is valid for all
the output times t. One can then specialize the expression to the various time subintervals that are
relevant in each problem.

The starting point of this method is to write down the two inequalities on t′ and t−t′ that enforce
the time constraints of the given functions h(t) and x(t). Then, one solves the inequalities for t,
and then for t′. In particular, let us assume that h(t) and x(t) are nonzero over the intervals:

h(t) , a ≤ t ≤ b
x(t) , c ≤ t ≤ d

where a,b, c, d may be positive or negative or even ±∞. Working with the left expression in Eq. (1)
we have the following inequalities,

a ≤ t′ ≤ b
c ≤ t − t′ ≤ d

a+ c ≤ t ≤ b+ d
⇒ a ≤ t′ ≤ b

−d ≤ t′ − t ≤ −c ⇒ a ≤ t′ ≤ b
t − d ≤ t′ ≤ t − c ⇒

a+ c ≤ t ≤ b+ d
max(a, t − d)≤ t′ ≤ min(b, t − c) ⇒ y(t)=

∫ min(b,t−c)

max(a,t−d)
h(t′)x(t − t′)dt′ (2)

where we obtained the range of the output t by adding them up, that is, a+c ≤ t ≤ b+d, and then we
flipped the second one around and solved for t′. The two inequalities for t′ must be simultaneously
satisfied, hence the min/max limits. Similarly, working with the right expression in Eq. (1), we have,

c ≤ t′ ≤ d
a ≤ t − t′ ≤ b ⇒ c ≤ t′ ≤ d

−b ≤ t′ − t ≤ −a ⇒ c ≤ t′ ≤ d
t − b ≤ t′ ≤ t − a ⇒

a+ c ≤ t ≤ b+ d
max(c, t − b)≤ t′ ≤ min(d, t − a) ⇒ y(t)=

∫ min(d,t−a)

max(c,t−b)
h(t − t′)x(t′)dt′ (3)

for a+c ≤ t ≤ b+d. The min/max functions switch from one of their arguments to the other when
the arguments are equal. For the expression in Eq. (2), the max-function switches when a = t − d,
or, t = a+ d, and the min-function, when b = t − c, or, t = b+ c. These define three subintervals,
over which Eq. (2) simplifies. The switch points and subintervals are the same for Eq. (3). These
operations are illustrated in the examples below.

1

Example 1

Determine the convolution of the signals h(t) and x(t) that have the following supports, i.e., the
intervals over which they are non-zero,

h(t)= 2, −1 ≤ t ≤ 1

x(t)= t, 0 ≤ t ≤ 3

Since h(t) is a simpler expression, let us work with the right form of Eq. (1). The argument t′ of
x(t′)must lie in its support interval, and similarly, t− t′ must lie in the support of h(t− t′), that is,

0 ≤ t′ ≤ 3

−1 ≤ t − t′ ≤ 1

−1 ≤ t ≤ 4

⇒
0 ≤ t′ ≤ 3

−1 ≤ t′ − t ≤ 1
⇒

0 ≤ t′ ≤ 3

t − 1 ≤ t′ ≤ t + 1
or,

−1 ≤ t ≤ 4

max(0, t − 1)≤ t′ ≤ min(3, t + 1)

The convolution integral then becomes, for −1 ≤ t ≤ 4,

y(t)=
∫ min(3,t+1)

max(0,t−1)
h(t − t′)x(t′)dt′ =

∫ min(3,t+1)

max(0,t−1)
2 · t′dt′ = [min(3, t + 1)

]2 − [max(0, t − 1)
]2

and the switch points are at, 0 = t− 1, or, t = 1, and, 3 = t+ 1, or, t = 2, so that the overall output
interval [−1,4] is split into the subintervals, [−1,1], [1,2], [2,4]. The expression for y(t) then
simplifies accordingly over each subinterval,

−1 ≤ t ≤ 1 ⇒ y(t)= (t + 1)2

1 ≤ t ≤ 2 ⇒ y(t)= (t + 1)2−(t − 1)2= 4t

2 ≤ t ≤ 4 ⇒ y(t)= 9− (t − 1)2

The following MATLAB code evaluates and plots h(t), x(t), y(t).

u = @(t) (t>=0);
t = linspace(-1,4,501);
h = 2*(u(t+1)-u(t-1));
x = t.*(u(t)-u(t-3));
y = min(3,t+1).^2 - max(0,t-1).^2;
plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

−1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

t

 h(t)
 x(t)
 y(t)
 switch points

Note that h(t) corresponds to a non-causal system and, as you can see, the output y(t) starts
coming out before the input x(t) begins!

2

Example 2

Determine the convolution of h(t) and x(t), defined as follows over the support intervals,

h(t)= 3t
2
, 0 ≤ t ≤ 1

x(t)= 4

3
, 2 ≤ t ≤ 5

Since x(t) is simpler, let us work with the left form of Eq. (1). The argument t′ of h(t′) must lie in
its support interval, and similarly, t − t′ must lie in the support of x(t − t′), that is,

0 ≤ t′ ≤ 1

2 ≤ t − t′ ≤ 5

2 ≤ t ≤ 6

⇒
0 ≤ t′ ≤ 1

−5 ≤ t′ − t ≤ −2
⇒

0 ≤ t′ ≤ 1

t − 5 ≤ t′ ≤ t − 2
or, finally

2 ≤ t ≤ 6

max(0, t − 5)≤ t′ ≤ min(1, t − 2)

The convolution integral then becomes, for 2 ≤ t ≤ 6,

y(t)=
∫ min(1,t−2)

max(0,t−5)

3t′

2
· 4

3
dt′ = [min(1, t − 2)

]2 − [max(0, t − 5)
]2

and the switch points are at, 0 = t − 5, or, t = 5, and, 1 = t − 2, or, t = 3, so that the overall
output interval [2,6] is split into the subintervals, [2,3], [3,5], [5,6]. The expression for y(t)
then simplifies accordingly over each subinterval,

2 ≤ t ≤ 3 ⇒ y(t)= (t − 2)2

3 ≤ t ≤ 5 ⇒ y(t)= 1

5 ≤ t ≤ 6 ⇒ y(t)= 1− (t − 5)2

The following MATLAB code evaluates and plots h(t), x(t), y(t).

u = @(t) (t>=0);
t = linspace(0,7,701);
h = 3/2*t.*(u(t)-u(t-1));
x = 4/3*(u(t-2)-u(t-5));
y = (min(1,t-2).^2 - max(0,t-5).^2) .* (u(t-2)-u(t-6));
plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

t

 h(t)
 x(t)
 y(t)
 switch points

Here, h(t) is causal and the output begins as soon as the input is applied at t = 2. The input-on
and input-off transients are also observed.

3

Example 3

Determine the convolution of h(t) and x(t), defined over the following support intervals by,

h(t)= 1 , −2 ≤ t ≤ 1

x(t)= 1 , 4 ≤ t ≤ 6

Let us work with the left form of Eq. (1). The argument t′ of h(t′) must lie in its support interval,
and similarly, t − t′ must lie in the support of x(t − t′), that is,

−2 ≤ t′ ≤ 1

4 ≤ t − t′ ≤ 6

2 ≤ t ≤ 7

⇒
−2 ≤ t′ ≤ 1

−6 ≤ t′ − t ≤ −4
⇒

−2 ≤ t′ ≤ 1

t − 6 ≤ t′ ≤ t − 4
or, finally

2 ≤ t ≤ 7

max(−2, t − 6)≤ t′ ≤ min(1, t − 4)

The convolution integral then becomes, for 2 ≤ t ≤ 7,

y(t)=
∫ min(1,t−4)

max(−2,t−6)
1 · 1dt′ = min(1, t − 4)−max(−2, t − 6)

and the switch points are at, 1 = t − 4, or, t = 5, and, −2 = t − 6, or, t = 4, so that the overall
output interval [2,7] is split into the subintervals, [2,4], [4,5], [5,7]. The expression for y(t)
then simplifies accordingly over each subinterval,

2 ≤ t ≤ 4 ⇒ y(t)= (t − 4)−(−2)= t − 2

4 ≤ t ≤ 5 ⇒ y(t)= (t − 4)−(t − 6)= 2

5 ≤ t ≤ 7 ⇒ y(t)= 6− (t − 1)= 7− t
The following MATLAB code evaluates and plots h(t), x(t), y(t).

u = @(t) (t>=0);
t = linspace(-2,7,901);
h = u(t+2)-u(t-1);
x = u(t-4)-u(t-6);
y = (min(1,t-4) - max(-2,t-6)) .* (u(t-2)-u(t-7));
plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

−2 −1 0 1 2 3 4 5 6 7
0

1

2

t

 h(t)
 x(t)
 y(t)

This is also a non-causal system with output that begins before the input!

4

Example 4

Use the results of the previous example to determine the convolution of h(t) and x(t), defined over
the support intervals,

h(t)= 1 , 0 ≤ t ≤ 3

x(t)= 1 , 4 ≤ t ≤ 6

The present h(t) is the delayed version of the previous h(t) by t = 2 time units. Therefore, the
output y(t) will also be delayed by the same amount. Thus, replacing t by t − 2 in the previous
example, we find that y(t) will be nonzero over 2 ≤ t − 2 ≤ 7, or, 4 ≤ t ≤ 9, and within that range
it will be given by,

y(t)= min(1, t − 2− 4)−max(−2, t − 2− 6)= min(1, t − 6)−max(−2, t − 8) , 4 ≤ t ≤ 9

The following MATLAB code evaluates and plots h(t), x(t), y(t).

u = @(t) (t>=0);
t = linspace(0,9,901);
h = u(t)-u(t-3);
x = u(t-4)-u(t-6);
y = (min(1,t-6) - max(-2,t-8)) .* (u(t-4)-u(t-9));
plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

0 1 2 3 4 5 6 7 8 9
0

1

2

t

 h(t)
 x(t)
 y(t)

Now, h(t) is causal and the output begins at the same time as the input, i.e., at t = 4.

Example 5

Use the results of the previous example to determine the convolution of h(t) and x(t), defined over
the following support intervals by,

h(t)= 1 , 0 ≤ t ≤ 3

x(t)= 1 , 0 ≤ t ≤ 2

The present x(t) is the time-advanced version of the previous one by t = 4 time units. Therefore,
the output y(t) will also be advanced by the same amount. Thus, replacing t by t+4 in the previous
example, we find that y(t) will be nonzero over 4 ≤ t + 4 ≤ 9, or, 0 ≤ t ≤ 5, and within that range
it will be given by,

y(t)= min(1, t + 4− 6)−max(−2, t + 4− 8)= min(1, t − 2)−max(−2, t − 4) , 0 ≤ t ≤ 5

this can also be written as,

y(t)= min(3, t)−max(0, t − 2) , 0 ≤ t ≤ 5

with MATLAB code,

5

u = @(t) (t>=0);
t = linspace(0,5,501);
h = u(t)-u(t-3);
x = u(t)-u(t-2);
y = (min(1,t-2) - max(-2,t-4)) .* (u(t)-u(t-5));
plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

0 1 2 3 4 5 6 7 8 9
0

1

2

t

 h(t)
 x(t)
 y(t)

Example 6

The convolution, y(t)= f1(t)∗f2(t), between two unit pulses of durations T1 and T2,

f1(t)= u(t)−u(t −T1) , 0 ≤ t ≤ T1

f2(t)= u(t)−u(t −T2) , 0 ≤ t ≤ T2

is given as follows, where the output time t is in the range, 0 ≤ t ≤ T1 +T2,†

y(t)= min(T1, t)−max(0, t −T2)= T1 +T2 − |t −T1| − |t −T2|
2

For example, the convolution between two identical unit pulses of duration T is,

f(t)= u(t)−u(t −T) , y(t)= f(t)∗f(t)
for, 0 ≤ t ≤ 2T,

y(t)= min(T, t)−max(0, t −T)=
⎧⎨
⎩
t , 0 ≤ t ≤ T
2T − t , T ≤ t ≤ 2T

= triangular pulse

0 1 2 3
0

0.5

1

1.5

t/T

y(
t)

/T

 f(t)
 y(t)

†we used the following identities, min(a, b)= a+ b− |a− b|
2

, max(a, b)= a+ b+ |a− b|
2

, for real a,b.

6

Example 7

Use the previous result and the delay property to determine the convolution of the two unit pulses,

f1(t)= u(t − 1)−u(t − 2) , 1 ≤ t ≤ 2

f2(t)= u(t − 1)−u(t − 3) , 1 ≤ t ≤ 3

If we undelay them, we would have the unit pulses,

f1(t)= u(t)−u(t − 1) , 0 ≤ t ≤ 1

f2(t)= u(t)−u(t − 2) , 0 ≤ t ≤ 2

which according to the previous problem have convolution (T1 ≤ T2 case),

y(t)= min(1, t)−max(0, t − 2) , 0 ≤ t ≤ 1+ 2 = 3

Now, if we apply two delays, each by t = 1 time units, we would get the desired result,

y(t)= min(1, t − 2)−max(0, t − 4) , 2 ≤ t ≤ 5

with MATLAB code,

u = @(t) (t>=0);
t = linspace(0,6,601);
y = (min(1,t-2)-max(0,t-4)).*(u(t-2)-u(t-5));
figure; plot(t,y,’r-’,’linewidth’,2);

0 1 2 3 4 5 6
0

0.5

1

1.5

t

 y(t)

Example 8

If h(t) or x(t) consist of multiple segments, you can break them into separate parts, and add up
the answers. For example, consider the convolution of the two signals,

h(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t , 0 ≤ t ≤ 1

1 , 1 ≤ t ≤ 2

0 , otherwise

, x(t)= u(t − 1)−u(t − 3)=
⎧⎨
⎩

1 , 1 ≤ t ≤ 3

0 , otherwise

We can write h(t) as the sum of the two parts,

h(t)= h1(t)+h2(t) ,
h1(t)= t

[
u(t)−u(t − 1)

]
h2(t)= u(t − 1)−u(t − 2)

7

Then, y(t) can be calculated as the sum,

y(t)= h(t)∗x(t)= [h1(t)+h2(t)
]∗ x(t)= h2(t)∗x(t)+h2(t)∗x(t)= y1(t)+y2(t)

The case, y2 = h2 ∗ x, was worked out in Example 7. The case, y1 = h1 ∗ x, is very similar to that
of Example 2, and may be solved by setting up the inequalities,

0 ≤ t′ ≤ 1

1 ≤ t − t′ ≤ 3

1 ≤ t ≤ 4

⇒
0 ≤ t′ ≤ 1

−3 ≤ t′ − t ≤ −1
⇒

0 ≤ t′ ≤ 1

t − 3 ≤ t′ ≤ t − 1
or, finally

1 ≤ t ≤ 4

max(0, t − 3)≤ t′ ≤ min(1, t − 1)
The convolution integral then becomes, for 1 ≤ t ≤ 4,

y1(t)=
∫ min(1,t−1)

max(0,t−3)
t′ · 1dt′ = 1

2

[
min2(1, t − 1)−max2(0, t − 3)

]

Combining this with the answer of the previous example, we obtain the total output, for, 1 ≤ t ≤ 5,

y(t)= y1(t)+y2(t)=1

2

[
min2(1, t − 1)−max2(0, t − 3)

][
u(t − 1)−u(t − 4)

]

+ [min(1, t − 2)−max(0, t − 4)
][
u(t − 2)−u(t − 5)

]
The switch times are at t = 2, t = 3, and t = 4, and the above expression specializes as follows in the
four subintervals, [1,2], [2,3], [3,4], [4,5], where y1(t) and y2(t) overlap over the subintervals
[2,3] and [3,4],

1 ≤ t ≤ 2 ⇒ y(t)= 1

2
(t − 1)2

2 ≤ t ≤ 3 ⇒ y(t)= 1

2
+ t − 2 = t − 3

2

3 ≤ t ≤ 4 ⇒ y(t)= 1

2
− 1

2
(t − 3)2+1 = 3

2
− 1

2
(t − 3)2

4 ≤ t ≤ 5 ⇒ y(t)= 1− (t − 4)= 5− t
The MATLAB code is,

u = @(t) (t>=0);
t = linspace(0,5,1001);
h = t.*(u(t)-u(t-1)) + u(t-1)-u(t-2);
x = u(t-1)-u(t-3);
y = 1/2*(min(1,t-1).^2 - max(0,t-3).^2) .* (u(t-1)-u(t-4)) + ...

(min(1,t-2) - max(0,t-4)).*(u(t-2)-u(t-5));
figure; plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

0 1 2 3 4 5
0

0.5

1

1.5

2

t

 h(t)
 x(t)
 y(t)

8

Example 9

In this example, we use the class method to derive a closed-form expression valid for the convolution
of Example 2-5 of the text, as displayed in Fig. 2-13.

It’s convenient to break the filter and the input into their left and right halves, since these parts
have simpler forms, that is, writing, h(t)= h1(t)+h2(t), and, x(t)= x1(t)+x2(t), where

h1(t) =
⎧⎨
⎩
+1, 0 ≤ t ≤ 1

0, otherwise
, h2(t)=

⎧⎨
⎩
−1, 1 < t ≤ 2

0, otherwise

x1(t) =
⎧⎨
⎩
t, 0 ≤ t ≤ 1

0, otherwise
, x2(t)=

⎧⎨
⎩

2− t, 1 ≤ t ≤ 2

0, otherwise

Then, the convolution can be broken up into four terms,

y(t)= y11(t)+y12(t)+y21(t)+y22(t)

where

yij(t)=
∫∞
−∞
hi(t′)xj(t − t′)dt′ , for i, j = 1,2

Using the class method of enforcing the inequalities satisfied by t′ and t − t′, we find that the
correct ranges for t and for the integration ranges are as follows for the four cases,

y11 case : 0 ≤ t ≤ 2, max(0, t − 1)≤ t′ ≤ min(1, t)
y12 case : 1 ≤ t ≤ 3, max(1, t − 1)≤ t′ ≤ min(2, t)
y21 case : 1 ≤ t ≤ 3, max(0, t − 2)≤ t′ ≤ min(1, t − 1)
y22 case : 2 ≤ t ≤ 4, max(1, t − 2)≤ t′ ≤ min(2, t − 1)

and the corresponding convolution integral are easily evaluated,

y11(t) =
∫ min(1,t)

max(0,t−1)
t′ dt′ = 1

2

[
min(1, t)

]2 − 1

2

[
max(0, t − 1)

]2

y12(t) =
∫ min(2,t)

max(1,t−1)
(2− t′)dt′ = 2 min(2, t)−1

2

[
min(2, t)

]2 − 2 max(1, t − 1)+1

2

[
max(1, t − 1)

]2

y21(t) = −
∫ min(1,t−1)

max(0,t−2)
t′ dt′ = −1

2

[
min(1, t − 1)

]2 + 1

2

[
max(0, t − 2)

]2

y22(t) = −
∫ min(2,t−1)

max(1,t−2)
(2− t′)dt′ = −2 min(2, t − 1)+1

2

[
min(2, t − 1)

]2 + 2 max(1, t − 2)−1

2

[
max(1, t − 2)

]2

Adding these up and enforcing their support ranges in t, we obtain the expression,

y(t)= y11(t)·
[
u(t)−u(t−2)

]+[y12(t)+y21(t)
]·[u(t−1)−u(t−3)

]+y22(t)·
[
u(t−2)−u(t−4)

]

By specializing this in each of the time subintervals, we find the explicit expression for y(t),

y(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2 t

2 , 0 ≤ t ≤ 1

− 3
2 t

2 + 4t − 2 , 1 ≤ t ≤ 2
3
2 t

2 − 8t + 10 , 2 ≤ t ≤ 3

− 1
2 t

2 + 4t − 8 , 3 ≤ t ≤ 4

The following MATLAB code evaluates and plots the signals h(t), x(t), y(t). The graphs are
shown at the end, showing also the switch points at times t = 1,2,3.

9

u = @(t) (t>=0);

t = linspace(-1,5,6001);

h = u(t) - 2*u(t-1) + u(t-2);
x = t.*(u(t)-u(t-1)) + (2-t).*(u(t-1)-u(t-2));

y = @(t) t.^2/2 .* (u(t)-u(t-1)) + ...
(-3*t.^2/2 + 4*t - 2) .* (u(t-1)-u(t-2)) + ...
(3*t.^2/2 - 8*t + 10) .* (u(t-2)-u(t-3)) + ...
(-t.^2/2 + 4*t - 8) .* (u(t-3)-u(t-4));

ts = [1,2,3]; ys = y(ts); % switch points

figure; plot(t,h,’b-’, t,x,’r--’, ’linewidth’,2)
figure; plot(t,y(t),’b-’, ts,ys,’r.’, ’linewidth’,2, ’markersize’,23);

−1 0 1 2 3 4 5

−1

−0.5

0

0.5

1

t

h(t), x(t)

 h(t)
 x(t)

−1 0 1 2 3 4 5

−1

−0.5

0

0.5

1

t

output, y(t)

 y(t)
 switch points

10

Example 10

This example clarifies the calculations of Problem 2.4-29 of the Lathi text using the approach dis-
cussed in class. Consider an input signal f(t) and an LTI system h(t), with corresponding convo-
lutional output,

g(t)= h(t)∗f(t)=
∫∞
−∞
h(t′)f(t − t′)dt′

From the linearity and time-invariance of the system, it follows that if the input is periodic and
expressed as a sum of shifted copies of f(t) at some period T, then the output will also be periodic
with period T and expressed as a sum of shifted copies of g(t), that is,

x(t)=
∞∑

p=−∞
f(t − pT) ⇒ y(t)=

∞∑
p=−∞

g(t − pT) (4)

If f(t) has duration T, then f(t) represents one period of the input. However, the output g(t)
will necessarily have longer length than T by an extra amount equal to the length of the filter h(t).
Therefore, the shifted copies of g(t) will overlap with each other, as shown below.

−3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

t

periodic input and system h(t)

 f(t+2)
 f(t)
 f(t−2)
 system h(t)

−3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

t

shifted/overlapped outputs

one period

 g(t+2)
 g(t)
 g(t−2)

11

The signal f(t) and the system h(t), shown above, are defined as follows,

f(t)=
⎧⎨
⎩

1 , 0 ≤ t ≤ 1

0 , otherwise
, h(t)=

⎧⎨
⎩
t , 0 ≤ t ≤ 1.5
0 , otherwise

The signal f(t) is periodically replicated with period T = 2. The upper graph below shows three
replicas of f(t) shifted at period T = 2, that is, the copies f(t+2), f(t), f(t−2). The bottom graph
shows the corresponding individual outputs, g(t + 2), g(t), g(t − 2), which partially overlap.

The duration of g(t) extends over 0 ≤ t ≤ 2.5. Therefore, its replica g(t + 2) that starts at
t = −2, will extend over the time interval −2 ≤ t ≤ 0.5, thus, overlapping with g(t) over the
interval 0 ≤ t ≤ 0.5. Therefore, over one period, say, 0 ≤ t ≤ 2, the complete output y(t) due to
the periodic signal x(t) will be given as follows,

y(t)=
⎧⎨
⎩
g(t + 2)+g(t) , 0 ≤ t ≤ 0.5
g(t) , 0.5 ≤ t ≤ 2

(5)

and this period will be replicated at multiples of T = 2. The individual output g(t) due to f(t) can
be calculated with our class method, that is,

g(t)=
∫∞
−∞
h(t′)f(t − t′)dt′

with t, t′ being restricted as follows,

0 ≤ t′ ≤ 1.5
0 ≤ t − t′ ≤ 1

0 ≤ t ≤ 2.5
⇒ 0 ≤ t′ ≤ 1.5

−1 ≤ t′ − t ≤ 0
⇒

0 ≤ t′ ≤ 1.5
t − 1 ≤ t′ ≤ t

max(0, t − 1)≤ t′ ≤ min(1.5, t)

Thus, g(t) is given by the following single expression over, 0 ≤ t ≤ 2.5,

g(t)=
∫ min(1.5,t)

max(0,t−1)
t′dt′ = 1

2

[
min(1.5, t)

]2 − 1

2

[
max(0, t − 1)

]2

The switch points are at t = 1 and t = 1.5, so that g(t) specializes as follows over the subintervals,

0 ≤ t ≤ 1 , g(t)= 1

2
t2

1 ≤ t ≤ 1.5 , g(t)= 1

2
t2 − 1

2
(t − 1)2= t − 1

2

1.5 ≤ t ≤ 2.5 , g(t)= 9

8
− 1

2
(t − 1)2= 5

8
− 1

2
t2 + t

Splitting the interval 0 ≤ t ≤ 1 in half and adding the contribution of g(t + 2) over 0 ≤ t ≤ 0.5,
we obtain from Eq. (5),

0 ≤ t ≤ 0.5 , y(t)= 9

8
− 1

2
(t + 2− 1)2+1

2
t2 = 5

8
− t

0.5 ≤ t ≤ 1 , y(t)= 1

2
t2

1 ≤ t ≤ 1.5 , y(t)= 1

2
t2 − 1

2
(t − 1)2= t − 1

2

1.5 ≤ t ≤ 2 , y(t)= 5

8
− 1

2
t2 + t

The three periods of the periodic output signal y(t) are shown below.

12

−3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

t

periodic output, y(t)

one period

 y(t+2)
 y(t) = basic period
 y(t−2)
 switch points

The MATLAB code for producing the above three graphs was as follows:

u = @(t) (t>=0);
f = @(t) u(t)-u(t-1);
g = @(t) (min(t,1.5).^2 - max(0,t-1).^2) .* (u(t)-u(t-2.5))/2;
h = @(t) t.*(u(t)-u(t-1.5));

y = @(t) (g(t+2)+g(t)) .* (u(t)-u(t-0.5)) + g(t) .* (u(t-0.5)-u(t-2));

t = linspace(-3,4,7001);

plot(t,f(t+2),’r--’, t,f(t),’b-’, t,f(t-2),’m--’, t,h(t),’g-’);
plot(t,g(t+2),’r--’, t,g(t),’b-’, t,g(t-2),’m--’);
plot(t,y(t+2),’r--’, t,y(t),’b-’, t,y(t-2),’m--’);

13

Example 11 – Discrete-Time Convolution

The computation of the convolution of two finite discrete-time sequences can be structured in a
variety of ways. Please refer to the “convolution-notes.pdf” handout on Sakai for more details.

Here we illustrate the following computation methods using: (a) the LTI form, (b) the direct form,
(c) the convolution table form, and (d) two versions of the convolution matrix form. The flip-and-
slide form is the least convenient and we will not discuss it here. These methods correspond to the
following expressions:

yn =
∑
m
xmhn−m = LTI form

=
∑
m
hmxn−m = direct form

=
∑
i, j

i+j=n

hixj = convolution table form

The two matrix forms are as follows, for example, for a length-4 filter and a length-5 input,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 0 0
h1 h0 0 0 0
h2 h1 h0 0 0
h3 h2 h1 h0 0
0 h3 h2 h1 h0

0 0 h3 h2 h1

0 0 0 h3 h2

0 0 0 0 h3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 0 0 0
x1 x0 0 0
x2 x1 x0 0
x3 x2 x1 x0

x4 x3 x2 x1

0 x4 x3 x2

0 0 x4 x3

0 0 0 x4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
h0

h1

h2

h3

⎤
⎥⎥⎥⎦

The two signals to be convolved, and the resulting convolution, are in this example,

h = [1, −2, 0, 3]

x = [4, 3, 2, 1, 2]
⇒ y = h∗ x = [4, −5, −4, 9, 9, 2, 3, 6]

In the LTI form, we form a linear combination of delayed replicas of the impulse response, with
coefficients being the input signal. We display the delayed/scaled replicas horizontally, and add
them vertically,

4*[1 -2 0 3]
3*[1 -2 0 3]

2*[1 -2 0 3]
1*[1 -2 0 3]

2*[1 -2 0 3]

or,

4 -8 0 12
3 -6 0 9

2 -4 0 8
1 -2 0 3

2 -4 0 6

4 -5 -4 9 9 4 3 6

In the direct form, we form a linear combination of delayed replicas of the input signal, with
coefficients being the impulse response. We display the delayed/scaled replicas horizontally, and
add them vertically,

14

1*[4 3 2 1 2]
-2*[4 3 2 1 2]

0*[4 3 2 1 2]
3*[4 3 2 1 2]

or,

4 3 2 1 2
-8 -6 -4 -2 -4

0 0 0 0 0
12 9 6 3 6

4 -5 -4 9 9 4 3 6

In the convolution table method, we arrange one of the signals horizontally, the other vertically,
and fill the table such that each row is the product of the horizontal signal times the corresponding
vertical sample, and finally we fold the table anti-diagonally, summing the corresponding entries
within each anti-diagonal fold,

x0 x1 x2 x3 x4

x0 x1 x2 x3 x4h0 h0 h0 h0 h0 h0

x0 x1 x2 x3 x4h1 h1 h1 h1 h1 h1

x1 x2 x3 x4h2 x0h2 h2 h2 h2 h2

x0 x1 x2 x3 x4h3 h3 h3 h3 h3 h3

j

i

that is, the calculated valaues are as follows, where the first and last three are transients, and the
middle two, steady,

y0 = h0x0

y1 = h0x1 + h1x0

y2 = h0x2 + h1x1 + h2x0

y3 = h0x3 + h1x2 + h2x1 + h3x0

y4 = h0x4 + h1x3 + h2x2 + h3x1

y5 = h1x4 + h2x3 + h3x2

y6 = h2x4 + h3x3

y7 = h3x4

so that in our example,

4 3 2 1 2

1 | 4 3 2 1 2
-2 | -8 -6 -4 -2 -4
0 | 0 0 0 0 0
3 | 12 9 6 3 6

4 -5 -4 9 9 4 3 6

15

Finally, we may verify the convolution matrix calculation,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
−5
−4

9
9
4
3
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
−2 1 0 0 0

0 −2 1 0 0
3 0 −2 1 0
0 3 0 −2 1
0 0 3 0 −2
0 0 0 3 0
0 0 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

4
3
2
1
2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0
3 4 0 0
2 3 4 0
1 2 3 4
2 1 2 3
0 2 1 2
0 0 2 1
0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
−2

0
3

⎤
⎥⎥⎥⎦

In MATLAB, the convolution matrices can be constructed with the help of the function CONVMTX,
by making the signals into columns, and specifying the number of desired columns, e.g., for the
above two cases,

h = [1,-2, 0, 3]’; % column vector
x = [4, 3, 2, 1, 2]’; % column vector

H = convmtx(h,length(x)); y = H * x
X = convmtx(x,length(h)); y = X * h

these commands result in the following matrices, and output signal,

H =
1 0 0 0 0

-2 1 0 0 0
0 -2 1 0 0
3 0 -2 1 0
0 3 0 -2 1
0 0 3 0 -2
0 0 0 3 0
0 0 0 0 3

X =
4 0 0 0
3 4 0 0
2 3 4 0
1 2 3 4
2 1 2 3
0 2 1 2
0 0 2 1
0 0 0 2

y =
4

-5
-4
9
9
2
3
6

16

The built-in function CONV is a compiled function and very fast. A do-it-yourself version of
CONV can be constructed easily in a partially-vectorized form, as follows (explained in class),

% ---------------------- DIY version of CONV ----------------
function y = myconv(h,x)

y = zeros(size(x)); % inherits row or column nature of x

M = length(h)-1; % filter order
L = length(x); % input length

h = h(:).’; % make h into a row
x = x(:); % make x into a column

for n=0:L-1+M,
m = max(0,n-L+1):min(n,M); % vector index
y(n+1) = h(m+1) * x(n-m+1); % dot product

end

17

