
332:345 – Linear Systems & Signals – Fall 2018

Set 2 – Some Application Examples – S. J. Orfanidis

1. Audio Equalizer

2. RC Circuit – First-Order LP/HP Filters

3. RLC Circuit – Second-Order LP/BP/HP Flters

4. Car with Linear Drag

5. Conductivity Model and Ohm’s Law

6. Rotating Antenna with Linear Drag

7. Newton’s Law of Cooling

8. Sprinting Models

9. Car or Skydiver with Quadratic Drag

10. Supersonic Free Fall

This set contains a few application examples of LTI systems (and a couple of nonlinear ones)
that were mentioned briefly in class, described by first or second order differential equations. It
illustrates also how to solve such systems using MATLAB’s built-in symbolic toolbox functions
for Laplace transforms and for analytically solving differential equations, and also how to solve
them numerically by converting them to difference equations. Further discussion of such topics
and additional examples will be presented in class and in future sets.

1

1. Shelving EQ Demo

H(s)= s+Ga
s+ a = transfer function

H(ω)= H(s)∣∣s=jω = jω+Ga
jω+ a = frequency response

|H(ω)| =
√
ω2 +G2a2

ω2 + a2
= magnitude response

|H(0)| = G = DC gain =
{
G > 1, boost

G < 1, cut

GdB = 20 log10(G) � G = 10GdB/20

0 1 2 3 4 5
0

1

2

3

4

ω

|H
(ω

)|

shelving EQ, boost, a = 1

 G = 2 ≡ 6 dB
 G = 3 ≡ 9.5 dB
 G = 4 ≡ 12 dB

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ω

|H
(ω

)|

shelving EQ, cut, a = 1

 G = 0.2 ≡ −14 dB
 G = 0.4 ≡ −8 dB
 G = 0.6 ≡ −4 dB

2

2. RC Circuit – First-Order LP/HP filters

I = C dVC
dt

VR = RI
Vin = VR +VC

Considering VC(t) or VR(t) as the outputs of the system driven by the input Vin(t), we
have the following first-order differential equations,

dVC
dt

+ 1

RC
VC = 1

RC
Vin ⇒ lowpass

dVR
dt

+ 1

RC
VR = dVin

dt
⇒ highpass

Setting a = 1/RC, and taking Laplace transforms (ignoring initial conditions) and using the
rule that, d/dt → s, we obtain the corresponding transfer functions,

dVC
dt

+ aVC = aVin

dVR
dt

+ aVR = dVin

dt

⇒
sVC(s)+aVC(s)= aVin(s)

sVR(s)+aVR(s)= sVin(s)

HLP(s)= VC(s)
Vin(s)

= a
s+ a = LP filter

HHP(s)= VR(s)
Vin(s)

= s
s+ a = HP filter

note the complementarity property: HLP(s)+HHP(s)= 1.
The shelving equalizer of the previous example corresponds to a linear combination of two

LP and HP filters, that is,

HEQ(s)= GHLP(s)+HHP(s)= G a
s+ a +

s
s+ a =

s+Ga
s+ a

A more general first-order linear system with input x(t) and output y(t) is described by a
differential equation of the following

ẏ(t)+a1y(t)= b0 ẋ(t)+b1x(t)

Soon, we’ll figure out how to solve this in complete generality with arbitrary initial conditions
specified either at t = 0− or at t = 0+.

3

3. Series RLC Circuit – Second-Order LP/BP/HP filters

a ≡ R
L
= damping constant

ω0 ≡ 1√
LC

= resonance frequency

Transfer functions:

HLP(s) = VC(s)
Vin(s)

= ω2
0

s2 + as+ω2
0
= LP filter

HBP(s) = VR(s)
Vin(s)

= as
s2 + as+ω2

0
= BP filter

HHP(s) = VL(s)
Vin(s)

= s2

s2 + as+ω2
0
= HP filter

time-domain differential equations:

VL(s)
Vin(s)

= s2

s2 + as+ω2
0

⇒ (s2 + as+ω2
0)VL(s)= s2Vin(s) ⇒

s2VL(s)+asVL(s)+ω2
0VL(s)= s2Vin(s) ⇒ V̈L + aV̇L +ω2

0VL = V̈in , etc.

V̈C + aV̇C +ω2
0VC =ω2

0Vin

V̈R + aV̇R +ω2
0VR = aV̇in

V̈L + aV̇L +ω2
0VL = V̈in

The characteristic poles (i.e. zeros of the denominator, s2 + as+ω2
0 = 0) are,

s = −a
2
± j

√
ω2

0 −
a2

4

and, if you recall from Principles II, we have the three possible cases:

ω0 >
a
2

⇒ damped, complex conjugate poles

ω0 = a
2

⇒ critically damped, two equal real poles

ω0 <
a
2

⇒ overdamped, two real poles

Since a > 0 and ω0 real, in all three cases the poles will have negative real parts resulting
in a stable and causal system.

Consider an example with circuit parameters, R = 1 Ω, L = 1 H, C = 40 mF. Then, a =
R/L = 6, ω0 = 1/

√
LC = 5, so that the poles are as follows corresponding to a dampled case,

s = −a
2
± j

√
ω2

0 −
a2

4
= −3± 4j

4

The resulting transfer functions, their partial fraction expansions, are,

HLP(s) = 25

s2 + 6s+ 25
= 3.125j
s+ 3+ 4j

− 3.125j
s+ 3− 4j

HBP(s) = 6s
s2 + 6s+ 25

= 3− 2.25j
s+ 3+ 4j

+ 3+ 2.25j
s+ 3− 4j

HHP(s) = s2

s2 + 6s+ 25
= 1− 3+ 0.875j

s+ 3+ 4j
− 3− 0.857j
s+ 3− 4j

The corresponding causal (and stable) impulse responses, will be,

hLP(t) = 6.25e−3t sin(4t)u(t)

hBP(t) = e−3t[6 cos(4t)−4.5 sin(4t)
]

hHP(t) = δ(t)−e−3t[6 cos(4t)−1.75 sin(4t)
]

These can be obtained by taking (the real parts of) the inverse Laplace transforms of the
above partial fraction expansions.

Even faster, one may use MATLAB’s symbolic toolbox to generate both the inverse Laplace
transforms and the partial fraction expansions, with typical code,

syms s t

HLP = 25/(s^2 + 6*s + 25);

HBP = 6*s/(s^2 + 6*s + 25);

HHP = s^2/(s^2 + 6*s + 25);

hLP = ilaplace(HLP); % hLP = (25*sin(4*t)*exp(-3*t))/4

hBP = ilaplace(HBP); % hBP = 6*exp(-3*t)*(cos(4*t) - (3*sin(4*t))/4)

hHP = ilaplace(HHP); % hHP = dirac(t) - 6*exp(-3*t)*(cos(4*t) + (7*sin(4*t))/24)

HLP = partfrac(HLP, ’factormode’,’full’); % HLP = -25i/(8*(s+3-4i)) + 25i/(8*(s+3+4i))

HBP = partfrac(HBP, ’factormode’,’full’); % HBP = (3+9i/4)/(s+3-4i) + (3-9i/4)/(s+3+4i)

HHP = partfrac(HHP, ’factormode’,’full’); % HHP = (-3+7i/8)/(s+3-4i) + (-3-7i/8)/(s+3+4i) + 1

5

4. Car with Linear Drag

m
dv
dt
= F −mαv , α = frictional constant

Assuming a constant force F, the solutions for v(t) and displacement x(t) (such that, ẋ = v)
are, with initial conditions v(0+)= v0 and x(0+)= x0,†

v(t) = vc + (v0 − vc)e−αt

x(t) = x0 + vc t + 1

α
(v0 − vc) (1− e−αt)

, vc ≡ F
mα

Eventually, the friction balances the force F (i.e., F −mαv = 0), and the car is moving with
constant velocity, vc.

Some additional and mathematically simlar examples are: (a) microscopic version of Ohm’s
law, (b) rotating radar antenna with linear drag, (c) Newton’s law of cooling, (d) sprinting models.

% -----------------
% solve with DSOLVE
% -----------------
syms t v(t) a v0 vc % F = vc*a, vc = critical velocity, mass m = 1

v = dsolve(diff(v,t) == a*vc - a*v, v(0)==v0)

symdisp(v) % v(t) = vc + exp(-a*t)*(v0 - vc)

syms t x(t) x0
dotx = diff(x,t); ddotx = diff(dotx,t);
x = dsolve(ddotx + a*dotx==a*vc, x(0)==x0, dotx(0)==v0)

% x = (v0 - vc + a*x0)/a + t*vc - (exp(-a*t)*(v0 - vc))/a

simplify(v-diff(x,t)) % verify v = dx/dt

% -----------------------------
% solve with Laplace transforms
% -----------------------------
syms V X s

% solve for V(s): s*V-v0 + a*V = a*vc/s ==> V(s) = vc/s + (v0-vc)/(s+a)

V = solve(s*V-v0 + a*V == a*vc/s, V)

v = ilaplace(V) % v = vc + exp(-a*t)*(v0 - vc)

X = solve(s^2*X-s*x0-v0 + a*(s*X-x0)==a*vc/s, X); % solve for X(s)
x = ilaplace(X)

% X = partfrac(X,s); % X = vc/s^2 - (v0-vc)/(a*(s+a)) + (v0-vc+a*x0)/(a*s)

†in this example, v(0−)= v(0+) and x(0−)= x(0+).

6

5. Conductivity Model and Ohm’s Law

Consider a conduction charge e with massmmoving under the influence of an electric field
E, where the drag force is due to collisions with the atomic lattice,

m
dv
dt
= eE −mαv

Assuming a constant electric field E that is turned on at t = 0, and zero initial velocity,
v(0)= 0, the solution is,

v(t)= vc − vce−αt , vc = eE
mα

= drift velocity

The current density or current flux (i.e., amount of charge flowing per unit time per unit
cross sectional area) is, where N is the number of conduction charges per unit volume,

J = Nev = Nevc(1− e−αt)= Ne2E
mα

(1− e−αt)

which, for large t, becomes the usual steady-state version of Ohm’s law,

J = Ne2E
mα

≡ σE , σ = Ne2

mα
= conductivity (1)

For copper, we have the typical values, N = 8.4×1028 electrons/m3, α = 4.1×1013 sec−1,
e = 1.6×10−19 Coul, m = 0.1×10−31 kg, resulting in the conductivity value,

σ = 5.8×107 Siemens/m

The time constant of reaching steady-state is τ = 1/α = 2.439×10−14 sec, i.e., 0.02439
picoseconds!

The ordinary circuit version of Ohm’s law is obtained from Eq. (1) by considering a resistor
of length l and cross-sectional area A, and assuming that the current density is distributed
uniformly over the area (i.e., ignoring skin effects). Since the voltage drop across the resistor is
V = E · l, the total current I flowing through it will be:

I = JA = σEA = σ V
l
A = σA

l
V ≡ V

R
, R = l

σA
= resistance

7

6. Rotating Antenna with Linear Drag

J
d2θ
dt2

= T − Jα dθ
dt

J
dω
dt

= T − Jαω

θ = angle of rotation

ω = θ̇ = angular velocity

J = moment of inertia

T = driving torque , α = drag constant

Assuming a constant Torque F, the solutions for ω(t) and θ(t) and displacement are with
initial conditions ω(0)=ω0 and θ(0)= θ0,

ω(t) =ωc + (ω0 −ωc)e−αt

θ(t) = θ0 +ωct + 1

α
(ω0 −ωc)(1− e−αt)

, ωc ≡ T
Jα

% --

syms t y(t) N a w0 y0

w = diff(y,t); Dw = diff(w,t);

y = dsolve(Dw == -a*w + N, y(0)==y0, w(0)==w0)

y = simplify(y)

symdisp(y) % theta(t)

w = diff(y,t);

symdisp(w) % omega(t)

8

7. Newton’s Law of Cooling

The rate of change of the temperature T(t) of an enclosure subject to external temperature
Text is given by Newton’s law, where k is a thermal constant that quantifies the insulation of the
enclosure from the external environment,

dT
dt

= −k(T −Text) (Newton’s law)

Assuming a constant Text and initial condition T(0)= T0, the solution is,

T(t)= Text + (T0 −Text)e−kt

so that eventually, the temperature of the enclosure is equalized with that of the external envi-
ronment.

% --

syms t T(t) k T0 Text

T = dsolve(diff(T,t)==-k*(T-Text), T(0)==T0)

symdisp(T) % T(t) = Text + exp(-k*t)*(T0 - Text)

9

8. Sprinting Models

Simple mathematical models exist for fitting the track data of 100-meter sprinters. The fol-
lowing two-parameter and three-parameter models, due to Keller and Tibshirani (see references
below), fit very well the track data of some very famous sprinters, such as Usain Bolt (currently
considered to be the fastest man in the world), Carl Lewis, and Ben Johnson.

Let v(t) and x(t) denote the speed and distance traveled at time t, then, the models give
rise to the following expressions,

v(t) = α
(

1− e−γ(t−t0)
)

x(t) = α(t − t0)−αγ
(

1− e−γ(t−t0)
) (Keller) (2)

v(t) = α
(

1− e−γ(t−t0)
)
− βt

x(t) = α(t − t0)−1

2
β(t − t0)2−α

γ

(
1− e−γ(t−t0)

) (Tibshirani) (3)

where t ≥ t0, and α,β,γ are parameters to be fitted, and t0 is the reaction time (which legally
must be greater than 0.1 sec to qualify.) The Keller model corresponds to setting β = 0 or c = 0
in Eq. (4) in the Tibshirani case.

Physically, the two models arise from the following equations of motion, both of which
assume a frictional force proportional to −γv (i.e., linear drag), and a constant accelerating
force in the Keller model, or a linearly decreasing one in the Tibshirani one (i.e., the sprinter
can’t maintain a constant force for the entire run),

dv
dt
= −γv+ F (Keller)

dv
dt
= −γv+ (F − ct) (Tibshirani)

(4)

where F, c are the constants, F = αγ − β, c = γβ. In sprinting events, the elapsed time is
recorded at 10-meter intervals, for example, for Usain Bolt at Beijing 2008, we have the observed
data:

xi (meters) 0 10 20 30 40 50 60 70 80 90 100
ti (sec) 0.165 1.85 2.87 3.78 4.65 5.50 6.32 7.14 7.96 8.79 9.69

The model parameters α,β,γ, can be fitted to such data. The figures below show some
typical fits.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

t, (sec)

x(
t)

,
(m

)

U. Bolt / Beijing 2008

 Keller model
 observed
 fitted

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

t, (sec)

x(
t)

,
(m

)

U. Bolt / Beijing 2008

 Tibshirani model
 observed
 fitted

10

The Tibshirani differential equation of motion can be solved for v(t) and x(t), verifying
Eq. (3), by the following MATLAB code using DSOLVE or Laplace,

% -----------------
% using DSOLVE
% -----------------
syms a c F positive
syms t x(t)

v = diff(x,t); Dv = diff(v,t);

x = dsolve(Dv == F-c*t - a*v, x(0)==0, v(0)==0) % zero initial conditions

v = diff(x,t)

symdisp(x);
symdisp(v);

% -----------------
% using Laplace
% -----------------
syms V s % solve with Laplace transforms
U = laplace(F-c*t) % input U(s) = F/s - c/s^2
V = solve(s*V==U-a*V, V); % V = (F*s-c)/(s^2*(a + s))

% V = (F*a+c)/a^2 * (1/s - 1/(s+a)) - c/a * 1/s^2
v1 = ilaplace(V) % v1 = (F*a+c)/a^2 * (1 - exp(-a*t)) - c/a * t

simplify(v-v1); % verify DSOLVE and Laplace solutions are the same

syms X s
X = simplify(solve(s^2*X==U-a*s*X, X)) % X = (F*s-c)/(s^3*(a + s))
x1 = ilaplace(X)

simplify(x-x1); % verify DSOLVE and Laplace solutions are the same

Sprinting References

1. J. B. Keller, “Theory of Competitive Running,” Phys. Today, 26, no.9, p.43 (1973), see also,
“Optimal Velocity in a Race,” Am. Math. Monthly, 81, 474 (1974).

2. R. Tibshirani, “Who is the Fastest Man in the World?,” Amer. Statistician, 51, 106 (1997).

3. G. Wagner, “The 100-Meter Dash: Theory and Experiment,” Phys. Teacher, 36, 144 (1998).

4. O. Helene and M. T. Yamashita, “The Force, Power, and Energy of the 100 Meter Sprint,”
Am. J. Phys., 78, 307 (2010).

5. http://myweb.lmu.edu/jmureika/track/, J. R. Mureika. Contains additional data.

11

9. Car or Skydiver with Quadratic Drag

A skydiver jumps off a plane at a height of h0 meters, with an initial vertical velocity v0. The
vertical drag force depends quadratically on the downward vertical velocity v :

Fdrag = 1

2
ρCAv2

where ρ is the air density (assumed here to be independent of height), A is the effective area
of the skydiver perpendicular to the motion, and C is a drag coefficient. Assuming a dense
body and ignoring the buoyancy force,† the net downward vertical force on the skydiver is the
difference between the force of gravity Fgrav =mg, and the drag force, wherem is the skydiver’s
mass plus equipment and g is the acceleration of gravity (also assumed to be independent of
height). Thus, Newton’s second law of motion (F =ma) states that:

m
dv
dt
= Fnet = Fgrav − Fdrag =mg− 1

2
ρCAv2 (5)

Eq. (5) represents a nonlinear system (because of the quadratic term) whose input is the
gravity force Fgrav and whose output is v(t).

A similar equation governs the motion of a car where the motion is horizontal and the gravity
force Fgrav is replaced by the accelerating force F of the car’s engine. To improve performance
and fuel efficiency, car and racecar designers are always striving to reduce the drag coefficient
C by proper design of the aerodynamic shape of the car.

As the downward velocity v keeps increasing, the drag-force term in Eq. (5) keeps building
up until it compensates the gravity force, resulting in zero acceleration, or, constant velocity
vc, referred to as critical or terminal velocity. From then on, the skydiver falls at that constant
velocity. The balancing condition between gravity and drag force gives the following value of
the critical velocity:

mg− 1

2
ρCAv2

c = 0 ⇒ vc =
√

2mg
ρCA

=
√

2Fgrav

ρCA
(6)

Let us define also the related quantities tc and hc,

tc = vc
g
=
√

2m
ρCAg

, hc = vctc = v2
c
g
= 2m
ρCA

(7)

The skydiver can control the value of vc by changing the effective area A. For example, if
the skydiver turns vertical, then A decreases and vc increases. Similarly, just before reaching
ground, the skydiver opens a parachute, thus substantially increasing A and greatly decreasing
vc. Using the definitions (6) and (7), Eq. (5) can be written in the simplified form:

dv
dt
= vc
tc

(
1− v

2

v2
c

)
(8)

The solution of the differential equation (8) with initial condition v(t0)= v0 is given by:

v(t)= vc
v0

vc
+ tanh

(
t − t0
tc

)

1+ v0

vc
tanh

(
t − t0
tc

) , t ≥ t0 (9)

†From Archimedes’ principle, the buoyancy force can be taken into accout by replacing g by its effective value
geff = g(1− ρ/ρobj), where ρobj is the object’s density. Here, we assume that ρ� ρobj.

12

where tc is a measure of the time constant to reach the critical velocity value.‡ Note that v(t0)=
v0 as it should, and v(∞)= vc. The solution (9) can be derived by standard calculus methods,
or, by using MATLAB’s symbolic math toolbox, for example, using the function DSOLVE:

syms t v(t) v0
syms tc vc positive

v = dsolve(diff(v,t)==(1-v^2/vc^2)*vc/tc, v(0)==v0)

The corresponding vertical drop distance y (measured from the airplane), can be obtained
by integrating the above solution for v :

dy
dt
= v ⇒ y(t)= hc ln

[
cosh

(
t − t0
tc

)
+ v0

vc
sinh

(
t − t0
tc

)]
, for t ≥ t0

Note that at t = t0, we have y(t0)= 0. The corresponding height measured from the ground
(see above figure) is h(t)= h0 − y(t), or,

h(t)= h0 − hc ln
[

cosh
(
t − t0
tc

)
+ v0

vc
sinh

(
t − t0
tc

)]
, t ≥ t0 (10)

Often, we wish to know how long it takes to drop to a height h ≤ h0. This can be obtained
by solving Eq. (10) for t in terms of h :

t = t0 + h0 − h
vc

+ tc ln

⎡
⎣vc +

√
v2
c + (v2

0 − v2
c)e−2(h0−h)/hc

vc + v0

⎤
⎦ , h0 ≥ h ≥ 0 (11)

or, in terms of the drop distance y = h0 − h,

t = t0 + y
vc
+ tc ln

⎡
⎣vc +

√
v2
c + (v2

0 − v2
c)e−2y/hc

vc + v0

⎤
⎦ , 0 ≤ y ≤ h0 (12)

As y increases by a few hc lengths, or as h decreases towards zero, the term e−2y/hc becomes
small and can be ignored, implying from Eq. (12) that the skydiver is then effectively falling with
constant terminal velocity vc:

t ≈ t0 + y
vc
+ tc ln

[
2vc

vc + v0

]
, y� hc

Setting y = h0 gives the time it takes to reach the ground:

tg = t0 + h0

vc
+ tc ln

⎡
⎣vc +

√
v2
c + (v2

0 − v2
c)e−2h0/hc

vc + v0

⎤
⎦

The rest of this example is made into a homework problem for you to try your hands on (not
to handed in). Assume the following numerical values:

ρ = 1.2 kg/m3, air density
g = 9.8 m/sec2, acceleration of gravity
m = 70 kg, skydiver’s weight (mass)
C = 1 skydiver’s drag coefficient

‡Typically, v(t) reaches about 99% of vc within a couple of tc’s while falling a distance of a couple of hc’s.

13

a. Write a MATLAB functionV(t, t0, v0, vc) that implements Eq. (9). It should be vectorized in
the variable t, with t0, v0, vc being parameters. Similarly, write functionsH(t, h0, t0, v0, vc)
and T(h, t0, h0, v0, vc) that implement Eqs. (10) and (11). The three functions must be de-
fined as anonymous functions:

V = @(t,t0,v0,vc) ...
H = @(t,h0,t0,v0,vc) ...
T = @(h,t0,h0,v0,vc) ...

b. Assume that the skydiver jumps from a height of h0 = 2500 m, with zero initial velocity
v0 = 0, at t0 = 0, and is oriented so that her effective surface area is A0 = 0.7 m2.
Calculate the terminal velocity vc0, and then calculate the time t1 it takes to drop to a
height of h1 = 1500 m above the ground and the speed v1 at that time. Use the above
functions for your calculations.

When the skydiver reaches the height h1, she suddenly changes orientation (e.g. turns
sideways) so that her effective area is now A1 = 0.3 m2. Calculate the new terminal
velocity vc1. Use the values of v1, t1 as the initial conditions for the rest of the fall for
t ≥ t1. Calculate the time t2 at which the skydiver reaches a height of h2 = 200 m above
ground, and calculate the speed v2 at that time instant.

At that time t2, the skydiver suddenly opens her parachute, which has surface area of
A2 = 50 m2. Calculate the new terminal velocity vc2.† Use the values of v2, t2 as the initial
values for the rest of the fall for t ≥ t2. Calculate the time, say tg, it takes to hit the ground
(i.e., the height is h = 0.)

c. Using the calculated values from part (b), and using appropriate relational operators and
your function V(t, t0, v0, vc), define a single-line anonymous function v(t) that describes
the velocity of the fall through the various stages till the ground is hit, that is, define the
function:

v(t)=

⎧⎪⎪⎨
⎪⎪⎩
V(t, t0, v0, vc0) , if t0 ≤ t ≤ t1
V(t, t1, v1, vc1) , if t1 ≤ t ≤ t2
V(t, t2, v2, vc2) , if t2 ≤ t ≤ tg

Similarly, define an overall height function:

h(t)=

⎧⎪⎪⎨
⎪⎪⎩
H(t, h0, t0, v0, vc0) , if t0 ≤ t ≤ t1
H(t, h1, t1, v1, vc1) , if t1 ≤ t ≤ t2
H(t, h2, t2, v2, vc2) , if t2 ≤ t ≤ tg

Define the vector of time instants spanning the interval 0 ≤ t ≤ tg :

t = linspace(0,tg,1001);

Evaluate v(t) and h(t) at these times t, and plot them. Plot height in units of kilome-
ters. See example plots below. On the height plot, place the points t1, t2, tg at which
the skydiver’s configuration changes. Note that the height plots are almost, but not quite,
straight-line plots with changing slopes because the terminal velocities change, see Eq. (11).

d. In parts (b,c), the heights h1, h2 were given and you had to calculate the corresponding
times t1, t2 at which changes in configuration took place.

In a slightly different version, assume now that these times are given to be t1 = 30 and
t2 = 50 sec. Calculate the corresponding heights h1, h2 and the time tg to reach the
ground. Repeat the plots of part (c).

†The terminal velocity vc2 is roughly equal to the velocity of jumping off a height of about one meter.

14

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

t (sec)

v(
t)

 (
m

/s
ec

)

downward velocity

 v(t)
 t

g

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

t (sec)

h
(t

)
 (

km
)

h
1
 = 1.5, h

2
 = 0.2 km

 height h(t)
 t

1
 = 26.85 sec

 t
2
 = 48.42 sec

 t
g
 = 87.82 sec

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

t (sec)

v(
t)

 (
m

/s
ec

)

downward velocity

 v(t)
 t

g

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

t (sec)

h
(t

)
 (

km
)

t
1
 = 30, t

2
 = 50 sec

 height h(t)
 h

1
 = 1.37 km

 h
2
 = 0.17 km

 t
g
 = 83.00 sec

15

10. Supersonic Free Fall

This is a more complicated version of the previous example, in that both the air density
ρ and gravity g are assumed to depend on height. It also shows how to discretize and solve
numerically a nonlinear system of differential equations.

In October 2012, Felix Baumgartner jumped off a balloon from the stratospheric altitude of
39 km (above sea-level), reaching after 50 sec a supersonic speed of 377 m/sec, at an altitude of
28 km. The speed of sound at that altitude is 300 m/sec, therefore, he achieved a record speed
of Mach 1.25. After falling for 260 seconds and reaching an altitude of 2.5 km, he opened the
parachute, and eventually reached the ground after a total falling time of 9 minutes and 18 sec.
Note that the ground at the landing site in Roswell, New Mexico was at an elevation of 1043
meters above sea level. The following data were recorded during the fall, see Ref. [1] at the end.

t v h vsound

(sec) (m/s) (km) (m/s)

0 0 38.969 315.38 jump altitude above sea level
34 309.72 33.446 305.48 begin supersonic speeds
50 377.11 27.833 300.28 maximum supersonic speed
64 289.72 22.960 297.02 end supersonic speeds

180 79.17 7.619 309.71 speed slows substantially
260 53.19 2.567 330.30 parachute opens
558 – 1.043 336.27 ground is reached

The purpose of this problem is to reproduce these results. We recall from the previous
example that the air-drag force and downward vertical force are given by:

Fdrag = 1

2
ρCAv2

m
dv
dt
=mg− Fdrag =mg− 1

2
ρCAv2

which may be re-written in the form:

dv
dt
= g ·

(
1− v

2

v2
c

)
, vc =

√
2mg
CAρ

= terminal velocity (13)

At high altitudes h, both the acceleration of gravity g and the air density ρ, and hence vc,
depend on the height h, and can be represented by the following functions:

g(h) = g0R2
e

(Re + h)2
, g0 = 9.80665 m/s2 , Re = 6356.766 km

ρ(h) = 1.2241 · exp

[
−
(

h
11.661

)
−
(

h
18.192

)2

+
(

h
29.235

)3
]
, 0 ≤ h ≤ 40 km

vc(h) =
√

2mg(h)
CAρ(h)

= height-dependent terminal velocity

(14)

where h is in units of km in all expressions, and Re is the radius of the earth. The function
ρ(h) provides a simple and accurate least-squares fit to the standard atmosphere data over the
interval 0 ≤ h ≤ 40 km. Thus, Eq. (8) must be replaced by the nonlinear system:

dv
dt
= g(h)·

(
1− v2

v2
c(h)

)
= acceleration

dh
dt

= −v = speed

(15)

16

where h is measured upwards from the ground and is related to the drop-distance y from the
initial height by h = h0 − y, as shown in the above figure. The negative sign in the second
equation is because v represents the downward velocity and dh/dt, the upward velocity.

Next, we discretize the time in small time steps tn = (n− 1)T, n = 1,2, . . . , and replace the
time-derivatives by differences to obtain the following computational algorithm:

v(n+ 1)−v(n)
T

= a(n)≡ g(h(n)) ·
(

1− v2(n)
v2
c
(
h(n)

)
)

h(n+ 1)−h(n)
T

= −v(n)

which can be rearranged as follows, where we also divided the velocity term of h(n) by 1000
because h(n) is in km instead of meters:†

initialize at:

h(1)= h0 , v(1)= v0 = 0

for n = 1,2,3, . . . , do:

a(n)= g(h(n)) ·
(

1− v2(n)
v2
c
(
h(n)

)
)

v(n+ 1)= v(n)+a(n)·T
h(n+ 1)= h(n)−v(n)·T/1000

(16)

In the rest of this problem assume the following parameter values:

m = 118 kg 260 lbs, Baumgartner’s total weight including equipment, Ref. [1]
C1 = 1.0 drag coefficient during free-fall
A1 = 0.7 m2 cross-sectional area during free-fall
C2 = 3.17 drag coefficient after parachute opens
A2 = 25.1 m2 parachute area, 270 ft2, Ref. [1]
v0 = 0 initial jump velocity
h0 = 38.969 km initial jump altitude, Ref. [1]
hs = 1.043 km landing site elevation above sea level, Ref. [1]
t260 = 260 sec time parachute opens, Ref. [1]
T = 0.01 sec time step

For the parameters not found in Ref. [1], we chose reasonable values to see if the above
model can adequately describe the fall. The value of C2 seems excessive but we estimated it in
the following way. The parachute was opened at a distance of (2567 − 1043)= 1524 meters
above ground, and it took (558 − 260)= 298 sec to land. Therefore, an approximate estimate
of the terminal velocity with the parachute open is vc = 1524/298 = 5.1 m/sec. Since the area
of the parachute is known, one can solve the equation vc =

√
2mg/ρCA for C, which gives

C = 3.17 using the values of ρ,g at the altitude of hs = 1.043 km.

a. Define single-line anonymous MATLAB functions implementingg(h) andρ(h) from Eq. (14).
Define a MATLAB function vc(h,CA) to be used with the two values of the coefficients
C1A1 and C2A2:

vc(h,CA)=
√

2mg(h)
CAρ(h)

(17)

whereCA is thought of as a single variable. Plotg(h), ρ(h), and vc(h,C1A1), vc(h,C2A2),
for 0 ≤ h ≤ 40 km.

†h(n), v(n) are MATLAB arrays

17

b. Run the following forever while-loop that implements Eq. (16), with the added feature that
it uses vc(h,C1A1) while the parachute is closed and then switches to vc(h,C2A2) when
the parachute opens at time t = 260 sec. The loop constructs the vectors t, v, h.

h(1) = h0;
v(1) = v0;
n = 1;

while 1

if h(n)<hs, break; end % break if ground altitude is reached

t(n) = (n-1)*T;

H = h(n); % altitude at time t(n)

CA = C1*A1*(t(n)<=t260) + C2*A2*(t(n)>t260); % parachute closed
% parachute opens after t=t260

a(n) = g(H)*(1 - v(n)^2/vc(H,CA)^2);

v(n+1) = v(n) + a(n)*T; % v(n) in m/s, a(n) in m/s^2, T in sec

h(n+1) = h(n) - v(n)*T/1000; % h in units of km

n = n+1;

end

c. From the exit condition of the loop, determine the total time to reach ground, tg, in sec-
onds. For the purpose of comparing the calculated values to the observed ones given
above, calculate also the following data points.

Using the function max, determine the maximum velocity reached, vmax, and the time
instant tmax and height hmax at which it is reached.

Determine also the time, velocity, and height, say, tb, vb, hb, when the fall becomes super-
sonic. And also the time, velocity, and height, say, te, ve, he, when the supersonic speeds
end and they become subsonic.

Determine the velocity and height corresponding to the time t = 180 sec, as well as those
corresponding to t = 260 sec when the parachute opens.

Using at most seven fprintf commands print the given data, and the above calculated data
points, exactly as shown below.

observed calculated
t v h t v h

notes (sec) (m/s) (km) (sec) (m/s) (km)
-------------------------- ----------------------- --------------------------

initial height 0 0.00 38.969 0.00 0.00 38.969
begin supersonic 34 309.72 33.446 34.07 305.57 33.531
maximum supersonic speed 50 377.11 27.833 50.23 369.39 27.925
end supersonic 64 289.72 22.960 67.65 296.35 21.950
speed slows substantially 180 79.17 7.619 180.00 77.94 6.901
parachute opens 260 53.19 2.567 260.00 57.75 1.589
ground 558 - 1.043 364.65 5.11 1.043

d. Plot the calculated speed v(t) and height h(t) versus time t over the interval 0 ≤ t ≤ tg,
and indicate on the graphs the observed and calculated data points from part (c).

18

We note that the above model describes the overall motion fairly accurately. Our calculated
altitude corresponding to t = 260 sec is shorter than the observed one, and this causes the
total landing time to be shorter. A possible explanation is that after reaching subsonic speeds
around t = 64 sec, Baumgartner went into a period of spinning and changing orientation before
stabilizing again. Our simplified model did not take that into account and this could have
increased the drag coefficient C1 and surface area A1 for a period of time, resulting in the
observed higher altitude at t = 260. Nevertheless, the model confirms the main features of
free fall in an atmosphere with density that diminishes with altitude, namely, that as the fall
proceeds, the speed first increases to a maximum, and then decreases to a terminal velocity, but
not quite achieving it, see Refs. [5–7].

0 100 200 300 400 500 600
0

100

200

300

400

t (sec)

v
 (

m
/s

)

vertical velocity

 velocity
 speed of sound
 calculated
 observed

0 50 100 150 200 250 300
0

100

200

300

400

t (sec)

v
 (

m
/s

)

vertical velocity − expanded view

 velocity
 speed of sound
 calculated
 observed

0 100 200 300 400 500 600
0

4

8

12

16

20

24

28

32

36

40

t (sec)

h
 (

km
)

altitude

ground

 altitude
 calculated
 observed

0 50 100 150 200 250 300
0

4

8

12

16

20

24

28

32

36

40

t (sec)

h
 (

km
)

altitude − expanded view

ground

 altitude
 calculated
 observed

References

1. Red Bull Stratos Project, 2012.

http://www.redbullstratos.com/
http://www.redbullstratos.com/science/scientific-data-review/
http://issuu.com/redbullstratos/docs/red_bull_stratos_factsheet_final_statistics_050213

2. F. R. Greening, “Baumgartner’s Jump and the Physics of Freefall,” Phys. Educ., 48, 139
(2013).

19

3. F. Theilmann and M. Apolin, “Supersonic Freefall—A Modern Adventure as a Topic for the
Physics Class,” Phys. Educ., 48, 150 (2013).

4. A. W. Robinson and C. G. Patrick, “The Physics of Colonel Kittinger’s Longest Lonely Leap,”
Phys. Educ., 43, 477 (2008).

5. J. Benacka, “High-Altitude Free Fall Revised,” Am. J. Phys., 78, 616 (2010).

6. P. Mohazzabi and J. H. Shea, “High-Altitude Free Fall,” Am. J. Phys., 64, 1242 (1996).

7. N. M. Shea, “Terminal Speed and Atmospheric Density,” Phys. Teacher, 31, 176 (1993).

20

