
332:345 – Linear Systems & Signals – Fall 2018

Set 6 – Solved Z-Transform Examples – S. J. Orfanidis

The solved examples in this set† illustrate the definition and properties of bilateral z-transforms,
inverse z-transforms, partial-fraction expansions, the connection of stability and causality to the
region of convergence (ROC), and the use of z-transforms in the analysis of the discrete-time linear
time-invariant systems, their transfer functions, frequency response, sinusoidal response, and some
block diagram realizations.

The problems in this set should be viewed within the broader context of equivalent descriptions
of discrete-time LTI systems, as depicted below (and also on the course syllabus).
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After you gain some practice with z-transforms please go back and read set-5 of class notes
on discretization schemes of continuous-time LTI systems and their implementation by difference
equations, including how to take into account non-zero initial conditions.

In inverting z-transforms to the time domain, one must use the following alternative time-domain
inverses, depending on the chosen ROC, or the type of desired inverse, e.g., stable, causal, etc.,

1

1− az−1
←→

⎧⎨
⎩ anu(n) , ROC, |z| > |a|
−anu(−n− 1) , ROC, |z| < |a|

stable unstable

causal |a| < 1 |a| > 1

anticausal |a| > 1 |a| < 1

(1)

which is the discrete-time version of a similar result for the bilateral Laplace transform,

1

s+ a ←→
⎧⎨
⎩ e−atu(t) , ROC, Re(s)> −Re(a)
−e−atu(−t) , ROC, Re(s)< −Re(a)

stable unstable

causal Re(a)> 0 Re(a)< 0

anticausal Re(a)< 0 Re(a)> 0

Note also the following differences with the SSTA textbook. In this set, we use what the book
calls the alternative partial fraction method, which amounts to working in the variable z−1 instead
of z in carrying out partial fraction expansions. The inversion results may look different in the two
approaches, but are mathematically equivalent. One way to understand the difference is to consider
the following two (causal) inverse z-transform examples, one expressed in the variable z−1, as we
do, and the other in the variable z, as in SSTA book,

†Based on Ch. 5 & 6 of the book Introduction to Signal Processing by S. J. Orfanidis, 2010, available from,
http://www.ece.rutgers.edu/ orfanidi/intro2sp/, and also posted on Sakai Resources.
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1

1− az−1
= z
z− a −→ anu(n)

1

z− a =
z−1

1− az−1
−→ an−1u(n− 1)

(2)

with ROC, |z| > |a|. Therefore, if you had carried out a PFE expansion in the variable z−1, the answer
would like like a sum terms of the upper type, and if you had an expansion in the variable z, the
answer would be a sum of terms of the lower type. See Problem 8 for a concrete example.

Evidently, the lower alternative is the delayed version of the upper one, as follows from the delay
property of z-transforms. The same delay property also implies that the anticausal version of Eq. (2),
corresponding to ROC, |z| < |a|, is,

1

1− az−1
= z
z− a −→ −anu(−n− 1)

1

z− a =
z−1

1− az−1
−→ −an−1u(−n)

(3)

Thus, to summarize the SSTA convention,

1

z− a ←→
⎧⎨
⎩ an−1u(n− 1) , ROC, |z| > |a|
−an−1u(−n) , ROC, |z| < |a|

stable unstable

causal |a| < 1 |a| > 1

anticausal |a| > 1 |a| < 1

(4)

Another difference is that in this set we use the letter ω to denote digital frequency in units of
radians/sample, which is more standard in DSP books, whereas the SSTA book denotes the same
quantity by Ω. In terms of the sampling time intervalT in seconds and sampling rate in samples/sec,
fs = 1/T, the digital frequency ω (or, Ω) is related to the physical frequency f in Hz by,

ω = 2πfT = 2πf
fs

A third difference is that we use the notationH(ω) to denote the frequency response of a digital
filter, whereas many DSP books use the notation H

(
ejω

)
, and the SSTA book, H

(
ejΩ
)
. In all cases,

the frequency response is related to the discrete-time transfer function H(z) by,

H(ω)= H(z)
∣∣∣∣
z=ejω=e2πjf/fs

In this notation, the sinusoidal response of a discrete-time LTI system reads as follows, for a
double-sided sinusoid of digital frequency ω,

exp(jωn) H−→ H(ω)exp(jωn)

cos(ωn) H−→ ∣∣H(ω)∣∣ cos
(
ωn+ argH(ω)

)
sin(ωn) H−→ ∣∣H(ω)∣∣ sin

(
ωn+ argH(ω)

)
(5)
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Problem 1

Determine the z-transform of the following sequences and determine the corresponding region of
convergence:

a. x(n)= δ(n− 5)

b. x(n)= δ(n+ 5)

c. x(n)= u(n− 5)

d. x(n)= u(−n+ 5)

Solution

a. From the delay property of z-transforms, X(z)= z−5Δ(z), where Δ(z)= 1 is the z-transform
of δ(n). Thus, X(z)= z−5. The ROC is the entire z-plane with the exception of the point
z = 0.

b. Similarly, X(z)= z5Δ(z)= z5, but now the ROC must only exclude the point at infinity z = ∞.

c. The unit-step has z-transform:

U(z)= 1

1− z−1

Thus,

X(z)= z−5U(z)= z−5

1− z−1

with ROC |z| > 1.

d. We may work with the definition:

X(z) =
∞∑

n=−∞
u(−n+ 5)z−n =

5∑
n=−∞

1 · z−n

= z−5 + z−4 + z−3 + z−2 + z−1 + 1+ z+ z2 + z3 + · · ·

= z−5[1+ z+ z2 + z3 + · · · ] = z−5

1− z = z
−5U(z−1)

The convergence of the series requires the ROC |z| < 1.

Alternatively, we recognize that x(n) is the delayed version of u(−n), that is, x(n)= u(−n+
5)= u(−(n− 5)). Using the general property that

g(n) Z−→ G(z) ⇒ g(−n) Z−→ G(z−1)

we find X(z)= z−5U(z−1).
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Problem 2

Determine the z-transform of the following sequences and determine the corresponding region of
convergence:

a. x(n)= (−0.5)nu(n)

b. x(n)= (−0.5)n
[
u(n)−u(n− 10)

]
c. x(n)= (0.5)nu(n)+(−0.5)nu(n)

Solution

a. Using the general result:

anu(n) −→ 1

1− az−1

with ROC |z| > |a|, we obtain:

X(z)= 1

1− (−0.5)z−1
= 1

1+ 0.5z−1

with ROC |z| > | − 0.5| = 0.5.

b. Method 1: Let w(n)= u(n)−u(n−10) with z-transformW(z). Using the linearity and delay
properties, we have

W(z)= U(z)−z−10U(z)= (1− z−10)U(z)= 1− z−10

1− z−1

Using the modulation property of z-transforms, we have

anw(n)−→W(z/a)= 1− (z/a)−10

1− (z/a)−1
= 1− a10z−10

1− az−1

With a = −0.5, we have

X(z)= 1− (−0.5)10z−10

1+ 0.5z−1

where the ROC is the whole z-plane minus the point z = 0.

Method 2: We recognize that x(n) is the finite sequence

x(n)= [1, a, a2, a3, a4, a5, a6, a7, a8, a9,0,0,0, · · · ]

and use the definition of z-transforms:

X(z)= 1+ az−1 + a2z−2 + · · · + a9z−9 = 1− a10z−10

1− az−1

where in the last step we used the finite geometric series:

1+ x+ x2 + · · · + xm = 1− xm+1

1− x , with x = az−1 and m = 9

c.

X(z) = 1

1− 0.5z−1
+ 1

1+ 0.5z−1
= 2

(1− 0.5z−1)(1+ 0.5z−1)

= 2

1− 0.25z−2
, ROC |z| > 0.5
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Problem 3

Determine the z-transform of the following sequences and determine the corresponding region of
convergence:

a. x(n)= 2(0.8)n cos(πn/2)u(n)

b. x(n)= (0.8j)nu(n)+(−0.8j)nu(n)

Solution

Using Euler, 2 cosθ = ejθ + e−jθ, with θ = πn/2 and also the fact that ejπ/2 = j and e−jπ/2 = −j,
we rewrite

2(0.8)ncos(πn/2) = (0.8)n[ejπn/2 + e−jπn/2]
= (0.8)n[jn + (−j)n]
= (0.8j)n+(−0.8j)n

Thus, the signals in questions (a) and (b) are the same. Their z-transform is

X(z)= 1

1− 0.8jz−1
+ 1

1+ 0.8jz−1
= 2

(1− 0.8jz−1)(1+ 0.8jz−1)
= 2

1+ 0.64z−2

ROC is |z| > |0.8j| = 0.8. An alternative method is to list a few of the signal values and then use
the infinite geometric series to sum them up, that is, with a = 0.8:

x(n)= 2[1,0,−a2,0, a4,0,−a6,0, a8,0,−a10,0, · · · ]

we obtain

X(z)= 2[1− a2z−2 + a4z−4 − a6z−6 + a8z−8 − a10z−10 + · · · ]= 2

1+ a2z−2

where we applied the infinite geometric series

1+ x+ x2 + x3 + · · · = 1

1− x
with x = −a2z−2 = −0.64z−2. Convergence of the geometric series requires that |x| < 1 or | −
a2z−2| < 1 or |z| > |a| or in our case |z| > 0.8.
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Problem 4

Determine the z-transform of the following sequences and determine the corresponding region of
convergence:

a. x(n)= (0.25)nu(n)+4nu(n)

b. x(n)= (0.25)nu(n)−4nu(−n− 1)

c. x(n)= −(0.25)nu(−n− 1)−4nu(−n− 1)

d. Explain why x(n)= −(0.25)nu(−n− 1)+4nu(n) does not have a z-transform.

Solution

The three signals in parts (a,b,c) all have the same z-transform, namely,

X(z)= 1

1− 0.25z−1
+ 1

1− 4z−1
= 2− 4.25z−1

1− 4.25z−1 + z−2

They differ only in their region of convergence: In case (a), both terms are causal, therefore
|z| > 0.25 and |z| > 4. Thus, ROC is |z| > 4. In case (b), the first term requires |z| > 0.25 while the
second |z| < 4. Combining, we find ROC 0.25 < |z| < 4. In case (c), both terms are anticausal, thus,
|z| < 0.25 and |z| < 4. Thus, ROC is |z| < 0.25. The figure below shows these ROCs (not drawn to
scale.)

The signal in (d) is unstable from both sides of the time axis. The first term in the z-transform
expansion,

X(z)= −
−1∑

n=−∞
(0.25)nz−n +

∞∑
n=0

4nz−n

would require ROC |z| < 0.25 and the second |z| > 4. The intersection of the two ROC sets is
empty, that is, there is no set of z’s for which the z-transform would converge.
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Problem 5

Using the power series definition of z-transforms, derive the z-transform and its ROC of the signal
x(n)= cos(πn/2)u(n).

Solution

Method 1: List the values of x(n) and sum the geometric series:

x(n) = [1,0,−1,0,1,0,−1,0,1,0,−1,0, . . . ]

X(z) = 1− z−2 + z−4 − z−6 + z−8 − · · ·

= 1+ x+ x2 + x3 + x4 + · · ·∣∣x=−z−2 = 1

1− x
∣∣∣∣
x=−z−2

= 1

1+ z−2

where convergence of the geometric series requires:

|x| < 1 ⇒ | − z−2| < 1 ⇒ |z| > 1

Method 2: Use Euler’s formula to split x(n) as the sum of two terms of the form anu(n):

x(n)= cos(πn/2)u(n)= 1

2

[
eπjn/2 + e−πjn/2]u(n)= 1

2
[jn + (−j)n]u(n)

where we used eπj/2 = j. Taking z-transforms, we find:

X(z)= 1/2
1− jz−1

+ 1/2
1+ jz−1

= 1

(1− jz−1)(1+ jz−1)
= 1

1+ z−2

where we applied the result

anu(n) Z−→ 1

1− az−1

for a = j and a = −j.
Method 3: Recognize that x(n) is periodic with period 4. Defining the length-4 sequence

g = [1,0,−1,0], we see that x(n) will be the periodic replication of g(n):

x = [g,g,g, . . . ] or,

x(n)= g(n)+g(n− 4)+g(n− 8)+g(n− 12)+· · ·
Taking z-transforms of both sides gives

X(z)= G(z)+z−4G(z)+z−8G(z)+· · · =
(

1+ z−4 + z−8 + z−12 + · · ·
)
G(z)

Summing up the series and using G(z)= 1− z−2, we get:

X(z)= G(z)
1− z−4

= 1− z−2

1− z−4
= 1− z−2

(1− z−2)(1+ z−2)
= 1

1+ z−2
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Problem 6

Using partial fractions or power series expansions, determine all possible inverse z-transforms of
the following z-transforms, sketch their ROCs, and discuss their stability and causality properties:

a. X(z)= 3(1+ 0.3z−1)
1− 0.81z−2

b. X(z)= 6− 3z−1 − 2z−2

1− 0.25z−2

c. X(z)= 6+ z−5

1− 0.64z−2

d. X(z)= 10+ z−2

1+ 0.25z−2

e. X(z)= 6− 2z−1 − z−2

(1− z−1)(1− 0.25z−2)
, ROC |z| > 1

f. X(z)= −4+ 1

1+ 4z−2

g. X(z)= 4− 0.6z−1 + 0.2z−2

(1− 0.5z−1)(1+ 0.4z−1)

Solution

a. Carry out a partial fraction expansion:

X(z)= 3(1+ 0.3z−1)
1− 0.81z−2

= 3(1+ 0.3z−1)
(1− 0.9z−1)(1+ 0.9z−1)

= A
1− 0.9z−1

+ B
1+ 0.9z−1

where

A =
[

3(1+ 0.3z−1)
1+ 0.9z−1

]
z=0.9

= 2, B =
[

3(1+ 0.3z−1)
1− 0.9z−1

]
z=−0.9

= 1

The first ROC is |z| > |0.9| = | − 0.9|, thus both terms will be inverted causally:

x(n)= A(0.9)nu(n)+B(−0.9)nu(n)

As expected, the answer is stable because the ROC contains the unit circle. The second ROC
is |z| < |0.9| = | − 0.9|, thus both terms will be inverted anticausally:

x(n)= −A(0.9)nu(−n− 1)−B(−0.9)nu(−n− 1)

The answer is unstable, because the ROC does not contain the unit circle.

b. Ordinary partial fraction expansion is not valid in this case because the degree of the numerator
is the same as the degree of the denominator. However, we may still have an expansion of the
form:

X(z) = 6− 3z−1 − 2z−2

1− 0.25z−2
= 6− 3z−1 − 2z−2

(1− 0.5z−1)(1+ 0.5z−1)

= A+ B
1− 0.5z−1

+ C
1+ 0.5z−1

where B and C are determined in the usual manner and A is determined by evaluating X(z)
at z = 0:

A =
[

6− 3z−1 − 2z−2

1− 0.25z−2

]
z=0

=
[

6z2 − 3z− 2

z2 − 0.25

]
z=0

= −2

−0.25
= 8
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B =
[

6− 3z−1 − 2z−2

1+ 0.5z−1

]
z=0.5

= −4, C =
[

6− 3z−1 − 2z−2

1− 0.5z−1

]
z=−0.5

= 2

For the first ROC, |z| > 0.5, the last two terms will be inverted causally:

x(n)= Aδ(n)+B(0.5)nu(n)+C(−0.5)nu(n)

For the second ROC, |z| < 0.5, the two terms will be inverted anticausally:

x(n)= Aδ(n)−B(0.5)nu(−n− 1)−C(−0.5)nu(−n− 1)

As expected, only the first inverse is stable because its ROC contains the unit circle.

c. The degree of the numerator is strictly greater than the degree of the denominator. The sim-
plest approach in such cases is to use the “remove/restore” method, that is, ignore the nu-
merator completely, do a partial fraction on the denominator, get its inverse z-transform, and
finally restore the effect of the numerator. To show these steps, write

X(z) = 6+ z−5

1− 0.64z−2
= (6+ z−5)·

[
1

1− 0.64z−2

]

≡ (6+ z−5)W(z)= 6W(z)+z−5W(z)

In the time-domain, we have then

x(n)= 6w(n)+w(n− 5)

Thus, the problem is reduced to the problem of finding w(n). Doing a partial fraction expan-
sion on W(z), we find

W(z)= 1

1− 0.64z−2
= 1

(1− 0.8z−1)(1+ 0.8z−1)
= A

1− 0.8z−1
+ B

1+ 0.8z−1

where A = B = 0.5. For the ROC |z| > 0.8, the two terms are inverted causally:

w(n)= A(0.8)nu(n)+B(−0.8)nu(n)

Inserting in x(n)= 6w(n)+w(n− 5), we find

x(n) = 6A(0.8)nu(n)+6B(−0.8)nu(n)+A(0.8)n−5u(n− 5)

+ B(−0.8)n−5u(n− 5)

Note that the last two terms are active only for n ≥ 5. For the ROC |z| < 0.8, we have the
anticausal/unstable answer:

w(n)= −A(0.8)nu(−n− 1)−B(−0.8)nu(−n− 1)

which gives for x(n):

x(n) = −6A(0.8)nu(−n− 1)−6B(−0.8)nu(−n− 1)

−A(0.8)n−5u(−n+ 4)−B(−0.8)n−5u(−n+ 4)

The u(−n + 4) was obtained as u(−(n − 5)−1). Note also that the last two terms are now
active for −n + 4 ≥ 0 or n ≤ 4, that is, x(n) has a slightly causal part extending to the right
up to n = 4. This happened because the strictly anticausal signal w(n) was delayed (shifted
to the right) by 5 time units by the term w(n− 5).
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d. The minor new feature of this problem is that the poles are complex-valued. When the poles are
complex, they come in conjugate pairs. In this case, the corresponding residues are complex
conjugates, too. Thus, only half of the residues need be computed:

X(z) = 10+ z−2

1+ 0.25z−2
= 10+ z−2

(1− 0.5jz−1)(1+ 0.5jz−1)

= A+ B
1− 0.5jz−1

+ B∗

1+ 0.5jz−1

Again, the A-term is needed because the degrees of numerator and denominator polynomials
are equal. We find

A =
[

10+ z−2

10.25z−2

]
z=0

=
[

10z2 + 1

z2 + 0.25

]
z=0

= 1

0.25
= 4

B =
[

10+ z−2

1+ 0.5jz−1

]
z=0.5j

= 3

We only needed to calculate B, and use B∗ for the conjugate pole. For the causal case, we have

x(n)= Aδ(n)+B(0.5j)nu(n)+B∗(−0.5j)nu(n)

Now, because the last two terms are complex conjugates of each other, we may use the general
identity 2Re(z)= z+ z∗ to write

B(0.5j)nu(n)+B∗(−0.5j)nu(n)= 2Re[B(0.5j)nu(n)]= 6(0.5)nRe[jn]u(n)

But, Re[jn]= Re[ejπn/2]= cos(πn/2) Thus,

B(0.5j)nu(n)+B∗(−0.5j)nu(n)= 6(0.5)ncos(πn/2)u(n)

and the final result is
x(n)= 4δ(n)+6(0.5)ncos(πn/2)u(n)

For the anticausal case, we obtain the anticausal version of the second term, namely,

x(n)= 4δ(n)−6(0.5)ncos(πn/2)u(−n− 1)

e. The partial fraction expansion is:

X(z)= 6− 2z−1 − z−2

(1− z−1)(1− 0.25z−2)
= 4

1− z−1
+ 1

1− 0.5z−1
+ 1

1+ 0.5z−1

Because ROC is |z| > 1 > 0.5, all terms are inverted causally to give:

x(n)= 4u(n)+(0.5)nu(n)+(−0.5)nu(n)

The answer is marginally stable because the pole z = 1 is on the unit circle.

f. The PF expansion gives:

X(z) = −4+ 1

1+ 4z−2
= −4+ 1

(1− 2jz−1)(1+ 2jz−1)

= −4+ 1/2
1− 2jz−1

+ 1/2
1+ 2jz−1
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The two regions of convergence are:

|z| > 2 and |z| < 2

They correspond to the causal and anticausal inverses:

x1(n) = −4δ(n)+0.5(2j)nu(n)+0.5(−2j)nu(n)

x2(n) = −4δ(n)−0.5(2j)nu(−n− 1)−0.5(−2j)nu(−n− 1)

Using Euler’s formula, we may write:

0.5
[
(2j)n+(−2j)n] = 2n

1

2
[jn + (−j)n]= 2n

1

2
[ejπn/2 + e−jπn/2]

= 2n cos(πn/2)

Thus, we can rewrite:

x1(n) = −4δ(n)+2n cos(πn/2)u(n)

x2(n) = −4δ(n)−2n cos(πn/2)u(−n− 1)

Only x2(n) is stable because its ROC contains the unit circle, or, because in the second term n
is effectively negative and causes it to decay exponentially for large negative n, that is, writing
n = −|n|, we have:

2n cos(πn/2)u(−n− 1)= 2−|n| cos(πn/2)u(−n− 1)→ 0 as n→ −∞

g. The PF expansion is in this case:

X(z)= 4− 0.6z−1 + 0.2z−2

(1− 0.5z−1)(1+ 0.4z−1)
= A+ B

1− 0.5z−1
+ C

1+ 0.4z−1

where

A =
[

4− 0.6z−1 + 0.2z−2

(1− 0.5z−1)(1+ 0.4z−1)

]
z=0

= 0.2
−0.5 · 0.4

= −1

B =
[

4− 0.6z−1 + 0.2z−2

1+ 0.4z−1

]
z=0.5

= 2

C =
[

4− 0.6z−1 + 0.2z−2

1− 0.5z−1

]
z=−0.4

= 3

The three ROC’s are:
|z| > 0.5, 0.5 > |z| > 0.4, 0.4 > |z|

The corresponding inverses are:

x1(n) = Aδ(n)+B(0.5)nu(n)+C(−0.4)nu(n)

x2(n) = Aδ(n)−B(0.5)nu(−n− 1)+C(−0.4)nu(n)

x3(n) = Aδ(n)−B(0.5)nu(−n− 1)−C(−0.4)nu(−n− 1)

Only x1(n) is stable. Its ROC contains the unit circle. The B-term in x2(n) and both the B and
C terms of x3(n) diverge exponentially for large negative n.
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Problem 7

Determine the stable inverse z-transform of the following:

X(z)= 4− z−4

1− 0.25z−2
= 4− z−4

(1− 0.5z−1)(1+ 0.5z−1)

You must use long division to reduce the order of the numerator and then apply partial fraction
expansion.

Solution

After long division, the PFE expansion is,

X(z)= 4− z−4

1− 0.25z−2
= 16+ 4z−2 − 12

1− 0.25z−2
= 16+ 4z−2 − 6

1− 0.5z−1
− 6

1+ 0.5z−1

The poles of X(z) are at z = ±0.5, therefore, the stable ROC that includes the unit circle is the
region |z| > 0.5, and all terms are inverted causally,

x(n)= 16δ(n)+4δ(n− 4)−6(0.5)nu(n)−6(−0.5)nu(n)
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Problem 8

In this example, we look at the differences arising in performing partial fraction expansions in the
variable z (the SSTA method) as opposed to the variable z−1 (our preferred method presented in
class) which is equivalent to what the SSTA text calls the “alternative” method.

a. Determine the stable inverse z-transform x(n) of the following z-transform, by performing
a PFE with respect to z−1 and then with respect to z, and verify that the two expressions for
x(n) are mathematically equivalent,

X(z)= 1+ 0.2z−1

(1− 0.5z−1)(1− 0.4z−1)
= z2 + 0.2z
(z− 0.5)(z− 0.4)

b. Repeat part (a) for the following z-transform,

X(z)= z+ 0.4
(z− 0.5)(z− 0.4)

= z−1 + 0.4z−2

(1− 0.5z−1)(1− 0.4z−1)

Solution

a. In the variable z−1 the numerator has degree one less than the denominator, so only the pole
terms contribute to the PFE, whereas with respect to the variable z, the numerator has the
same degree as the denominator, so an extra constant is necessary in the expansion. We find,

X(z)= 7

1− 0.5z−1
− 6

1− 0.4z−1
= 1+ 3.5

z− 0.5
− 2.4
z− 0.4

The stable ROC that contains the unit-circle is |z| > 0.5, so that the inverse z-transforms from
the above two expressions are the causal ones (see Eq. (2) on first page),

x(n) = 7(0.5)nu(n)−6(0.4)nu(n)

x(n) = δ(n)+3.5(0.5)n−1u(n− 1)−2.4(0.4)n−1u(n− 1)

The two expressions are equivalent, indeed, at n = 0 both yield the value x(0)= 7 − 6 = 1,
whereas for n ≥ 1, the second expression is seen to be the same as the first,

3.5(0.5)n−1−2.4(0.4)n−1= 3.5
0.5

(0.5)n−2.4
0.4

(0.4)n= 7(0.5)n−6(0.4)n

b. In this case, the PFE with respect to z contains only pole terms whereas that with respect to
z−1 contains an additional constant term,

X(z)= 9

z− 0.5
− 8

z− 0.4
= 2+ 18

1− 0.5z−1
− 20

1− 0.4z−1

so that the stable inverse z-transforms from the above two expressions are,

x(n) = 9(0.5)n−1u(n− 1)−8(0.4)n−1u(n− 1)

x(n) = 2δ(n)+18(0.5)nu(n)−20(0.4)nu(n)

and we verify, x(0)= 0 = 2+ 18− 20, whereas for n ≥ 1,

9(0.5)n−1−8(0.4)n−1= 9

0.5
(0.5)n− 8

0.4
(0.4)n= 18(0.5)n−20(0.4)n

13



We demonstrate also that the “alternative” method is equivalent to our class method, but it takes
longer to write down. For example, in case (a) the steps are,

X(z)= 1+ 0.2z−1

(1− 0.5z−1)(1− 0.4z−1)
given X(z)

X(z)= z2 + 0.2z
(z− 0.5)(z− 0.4)

rewrite it in terms of z

X(z)
z

= z+ 0.2
(z− 0.5)(z− 0.4)

divide out a factor of z

X(z)
z

= 7

z− 0.5
− 6

z− 0.4
perform PFE in z

X(z)= 7z
z− 0.5

− 6z
z− 0.4

restore the factor of z

X(z)= 7

1− 0.5z−1
− 6

1− 0.4z−1
rewrite it in terms of z−1

Thus, eventually arriving at the same PFE as in the class method. Similarly in case (b), we have,

X(z)= z−1 + 0.4z−2

(1− 0.5z−1)(1− 0.4z−1)
given X(z)

X(z)= z+ 0.4
(z− 0.5)(z− 0.4)

rewrite it in terms of z

X(z)
z

= z+ 0.2
z(z− 0.5)(z− 0.4)

divide out a factor of z

X(z)
z

= 2

z
+ 18

z− 0.5
− 20

z− 0.4
perform PFE in z

X(z)= 2+ 18z
z− 0.5

− 20z
z− 0.4

restore the factor of z

X(z)= 2+ 18

1− 0.5z−1
− 20

1− 0.4z−1
rewrite it in terms of z−1

Clearly, all of the intermediate steps in the “alternative” method can be avoided if one works
directly with the variable z−1.
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Problem 9

Using z-transforms, determine the transfer function H(z) and from it the causal impulse response
h(n) of the linear systems described by the following I/O difference equations:

a. y(n)= −0.8y(n− 1)+x(n)
b. y(n)= 0.8y(n− 1)+x(n)
c. y(n)= 0.8y(n− 1)+x(n)+x(n− 1)

d. y(n)= 0.8y(n− 1)+x(n)−0.5x(n− 1)

e. y(n)= 0.8y(n− 1)+x(n)+0.25x(n− 2)

f. y(n)= 0.9y(n− 1)−0.2y(n− 2)+x(n)+x(n− 1)−6x(n− 2)

In each case, determine also the frequency responseH(ω), the pole/zero pattern of the transfer
function on the z-plane, draw a rough sketch of the magnitude response |H(ω)| over the right half of
the Nyquist interval 0 ≤ω ≤ π, and finally, draw the direct and canonical block diagram realizations
of the difference equation and state the corresponding sample-by-sample filtering algorithms.

Solution

a. From Y(z)= −0.8z−1Y(z)+X(z) it follows:

H(z)= 1

1+ 0.8z−1
⇒ H(ω)= 1

1+ 0.8e−jω

The causal inverse z-transform of H(z) is h(n)= (−0.8)nu(n). There is only one pole at
z = −0.8, that is, near the “high frequency” part of the unit circle. Thus, the filter will tend to
enhance high frequencies, i.e., it will behave as a high pass filter:

= polez-plane

-0.8 1

π ω
0

5

0.55

|H(ω)|

Block diagram realization and the sample-by-sample processing algorithm:

x

-0.8

y
y

z-1

w1

for each input sample x do:
y = −0.8w1 + x
w1 = y

b. Change −0.8 to 0.8 in the above problem. Now the pole at z = 0.8 is in the “low frequency”
part of the unit circle and the filter is acting as a low pass filter.

c. The I/O equation Y(z)= 0.8z−1Y(z)+X(z)+z−1X(z) gives

H(z)= 1+ z−1

1− 0.8z−1
= A+ B

1− 0.8z−1
⇒ h(n)= Aδ(n)+B(0.8)nu(n)

15



where

A =
[

1+ z−1

1− 0.8z−1

]
z=0

= −1.25, B =
[

1+ z−1
]
z=0.8

= 2.25

The filter enhances low frequencies for two reasons: first, it has a pole in the low frequency
range, z = 0.8, and it has a zero in the high frequency range, z = −1. Its frequency response
will be

H(ω)= 1+ e−jω
1− 0.8e−jω

z-plane

0.8-1

= poles
= zeros

π
ω

0

10
exact
zero

|H(ω)|

The canonical form realization and its sample processing algorithm are:

x

0.8

y
w0

z-1

w1

for each input sample x do:
w0 = 0.8w1 + x
y = w0 +w1

w1 = w0

The direct form realization and its sample processing algorithm are:

x

0.8

y

z-1 z-1

v1 w1

for each input sample x do:
y = 0.8w1 + x+ v1

v1 = x
w1 = y

d. The I/O equation Y(z)= 0.8z−1Y(z)+X(z)−0.5z−1X(z) gives

H(z)= 1− 0.5z−1

1− 0.8z−1
= A+ B

1− 0.8z−1
⇒ h(n)= Aδ(n)+B(0.8)nu(n)

where

A =
[

1− 0.5z−1

1− 0.8z−1

]
z=0

= 0.625, B =
[

1− 0.5z−1
]
z=0.8

= 0.375

The filter has a zero at z = 0.5 and a pole at z = 0.8 — both in the low frequency range. Thus,
their effect will be to cancel each other, and whichever is closest to the unit circle ultimately
wins. Here, the pole is nearer. Thus, the filter will tend to act as a lowpass filter. Indeed, its
response at ω = 0 or z = 1 is (1 − 0.5)/(1 − 0.8)= 2.5, whereas its response at ω = π or
z = −1 is (1+ 0.5)/(1+ 0.8)= 0.833.
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z-plane

0.8

0.5

= poles
= zeros

π
ω

0

2.5

0.833

|H(ω)|

The canonical form realization and its sample processing algorithm are:

x

0.8 -0.5

y
w0

z-1

w1

for each input sample x do:
w0 = 0.8w1 + x
y = w0 − 0.5w1

w1 = w0

The direct form realization and its sample processing algorithm are:

x

0.8-0.5

y

z-1 z-1

v1 w1

for each input sample x do:
y = 0.8w1 + x− 0.5v1

v1 = x
w1 = y

e. Y(z)= 0.8z−1Y(z)+X(z)+0.25z−2X(z) ⇒ H(z)= 1+ 0.25z−2

1− 0.8z−1
.

Using the “remove/restore numerator” method of problem (2h), we find

h(n)= (0.8)nu(n)+0.25(0.8)n−2u(n− 2)

The filter has two conjugate zeros at mid range, z = ±0.5j = 0.5e±jπ/2, and a low frequency
pole at z = 0.8. Thus, the filter will enhance low frequencies and suppress mid range frequen-
cies:

z-plane

0.8

0.5j

-0.5j

= poles
= zeros

π
ω

0

|H(ω)|

The canonical form realization and its sample processing algorithm are:

x

0.8

0.25

y
w0

z-1

z-1

w1

w2

for each input sample x do:
w0 = 0.8w1 + x
y = w0 + 0.25w2

w2 = w1

w1 = w0
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The direct form realization and its sample processing algorithm are:

x

0.8

0.25

y

z-1

z-1

z-1

v1

v2

w1

for each input sample x do:
y = x+ 0.25v2 + 0.8w1

v2 = v1

v1 = x
w1 = y

f. Y(z)= 0.9z−1Y(z)−0.2z−2Y(z)+X(z)+z−1X(z)−6z−2X(z), which implies

H(z)= 1+ z−1 − 6z−2

1− 0.9z−1 + 0.2z−2

Factor numerator and denominator and expand in partial fractions:

H(z)= (1+ 3z−1)(1− 2z−1)
(1− 0.4z−1)(1− 0.5z−1)

= A+ B
1− 0.4z−1

+ C
1− 0.5z−1

where

A =
[

(1+ 3z−1)(1− 2z−1)
(1− 0.4z−1)(1− 0.5z−1)

]
z=0

= −30

B =
[
(1+ 3z−1)(1− 2z−1)

1− 0.5z−1

]
z=0.4

= 136

C =
[
(1+ 3z−1)(1− 2z−1)

1− 0.4z−1

]
z=0.5

= −105

Thus, h(n)= Aδ(n)+B(0.4)nu(n)+C(0.5)nu(n). The two zeros at z = −3 and z = 2 are too
far from the unit circle to have any significant effect on the magnitude response. The two poles
at z = 0.4,0.5 are both in the low frequency range. Thus, the filter will be a low pass filter. The
value of the magnitude response at ω = 0 or z = 1 is |1+ 1− 6|/|1− 0.5||1− 0.4| = 13.33,
whereas its value at ω = π or z = −1 is |1− 1− 6|/|1+ 0.5||1+ 0.4| = 2.86.

z-plane

0.5

0.4

-3 2

= poles
= zeros

π
ω

0

13.33

2.86

|H(ω)|

The canonical form realization and its sample processing algorithm are:

x

0.9

-6-0.2

y
w0

z-1

z-1

w1

w2

for each input sample x do:
w0 = x+ 0.9w1 − 0.2w2

y = w0 +w1 − 6w2

w2 = w1

w1 = w0
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The direct form realization and its sample processing algorithm are:

x

0.9

-6 -0.2

y

z-1 z-1

z-1 z-1

v1

v2

w1

w2

for each input sample x do:
y = x+ v1 − 6v2 + 0.9w1 − 0.2w2

v2 = v1

v1 = x
w2 = w1

w1 = y
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Problem 10

A unit-step signal x(n)= u(n) is applied at the inputs of the systems of Problem 9.

a. Using z-transforms, derive expressions for the corresponding output signals y(n) for alln ≥ 0,
and determine which part of y(n) is the steady-state part and which the transient part.

b. Repeat for the input x(n)= (−1)nu(n).

c. Repeat for the input x(n)= (0.5)nu(n) applied only to Problem 9(d).

d. Repeat for the input x(n)= (0.5)ncos(πn/2)u(n) applied to Problem 9(e) only.

e. Repeat for the unstable input x(n)= 2nu(n) applied only to the system of Problem 9(f). Why
is the output stable in this case?

Solution

a. For a unit-step input and the filter (a) of Problem 9, we have:

Y(z) = H(z)X(z)= 1

(1+ 0.8z−1)(1− z−1)
= A

1+ 0.8z−1
+ B

1− z−1

y(n) = A(−0.8)nu(n)+Bu(n)

where A = 1/2.25, B = H(1)= H(z)∣∣z=1 = 1/1.8. The B-term represents the steady part.

For filter (b), we have:

Y(z) = H(z)X(z)= 1

(1− 0.8z−1)(1− z−1)
= A

1− 0.8z−1
+ B

1− z−1

y(n) = A(0.8)nu(n)+Bu(n)

where A = −4, B = H(1)= 5. The B-term represents the steady part.

For filter (c), we have,

Y(z) = 1+ z−1

(1− z−1)(1− 0.8z−1)
= A

1− z−1
+ B

1− 0.8z−1

y(n) = Au(n)+B(0.8)nu(n)

with A = H(1)= 10, B = −9.

For filter (d),

Y(z) = 1− 0.5z−1

(1− z−1)(1− 0.8z−1)
= A

1− z−1
+ B

1− 0.8z−1

y(n) = Au(n)+B(0.8)nu(n)
with A = H(1)= 2.5, B = −1.5.

For filter (e),

Y(z) = 1+ 0.25z−2

(1− z−1)(1− 0.8z−1)
= A+ B

1− z−1
+ C

1− 0.8z−1

y(n) = Aδ(n)+Bu(n)+C(0.8)nu(n)

where A = Y(0)= 0.3125, B = H(1)= 6.25, C = −5.5625. The B-term is the steady part.
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For filter (f), we have,

Y(z) = 1+ z−1 − 6z−2

(1− z−1)(1− 0.4z−1)(1− 0.5z−1)

= A
1− z−1

+ B
1− 0.4z−1

+ C
1− 0.5z−1

y(n) = Au(n)+B(0.4)nu(n)+C(0.5)nu(n)

b. For the alternating step and filter (a) of Problem 9, we have,

Y(z) = 1

(1+ 0.8z−1)(1+ z−1)
= A

1+ 0.8z−1
+ B

1+ z−1

y(n) = A(−0.8)nu(n)+B(−1)nu(n)

where A = −4, B = H(−1)= 5. The B-term represents the steady part.

For filter (b),

Y(z) = 1

(1− 0.8z−1)(1+ z−1)
= A

1− 0.8z−1
+ B

1+ z−1

y(n) = A(0.8)nu(n)+B(−1)nu(n)

where A = 1/2.25, B = H(−1)= 1/1.8. The B-term represents the steady part.

For filter (c),

Y(z) = 1+ z−1

(1+ z−1)(1− 0.8z−1)
= 1

1− 0.8z−1

y(n) = (0.8)nu(n)
The high frequency zero at z = −1 of the filter canceled the high frequency input signal. The
output is only transient — it decays to zero exponentially.

For filter (d),

Y(z) = 1− 0.5z−1

(1+ z−1)(1− 0.8z−1)
= A

1+ z−1
+ B

1− 0.8z−1

y(n) = A(−1)nu(n)+B(0.8)nu(n)
For filter (e),

Y(z) = 1+ 0.25z−2

(1+ z−1)(1− 0.8z−1)
= A+ B

1+ z−1
+ C

1− 0.8z−1

y(n) = Aδ(n)+B(−1)nu(n)+C(0.8)nu(n)

The B-term is the steady part.

For filter (f),

Y(z) = 1+ z−1 − 6z−2

(1+ z−1)(1− 0.4z−1)(1− 0.5z−1)

= A
1+ z−1

+ B
1− 0.4z−1

+ C
1− 0.5z−1

y(n) = A(−1)nu(n)+B(0.4)nu(n)+C(0.5)nu(n)
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c. The input z-transform is X(z)= 1/(1− 0.5z−1). Thus, applied to Problem 9(d) gives:

Y(z) = 1− 0.5z−1

(1− 0.5z−1)(1− 0.8z−1)
= 1

1− 0.8z−1

y(n) = (0.8)nu(n)

The filter zero canceled the signal pole.

d. Here, we have,

x(n)= (0.5)ncos
(
πn
2

)
u(n) Z−→ X(z)= 1

1+ 0.25z−2

Thus,

Y(z) = 1+ 0.25z−2

(1+ 0.25z−2)(1− 0.8z−1)
= 1

1− 0.8z−1

y(n) = (0.8)nu(n)
Again, the signal poles were canceled by the filter zeros.

e. The input has z-transform, X(z)= 1/(1− 2z−1). Therefore,

Y(z) = (1+ 3z−1)(1− 2z−1)
(1− 2z−1)(1− 0.5z−1)(1− 0.4z−1)

= 1+ 3z−1

(1− 0.5z−1)(1− 0.4z−1)
= 35

1− 0.5z−1
− 34

1− 0.4z−1

y(n) = 35(0.5)nu(n)−34(0.4)nu(n)

The unstable input was canceled by a filter zero to give a stable output.
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Problem 11

A unit-step signal x(n)= u(n) is applied at the input of the linear systems:

a. y(n)= x(n)+6x(n− 1)+11x(n− 2)+6x(n− 3)

b. y(n)= x(n)−x(n− 4)

Using z-transforms, determine the corresponding output signals y(n), for all n ≥ 0, ignoring
any initial conditions,

Repeat for the alternating-step input x(n)= (−1)nu(n).

Solution

a. Setting x(n)= u(n) in the I/O difference equation, we find

y(n)= u(n)+6u(n− 1)+11u(n− 2)+6u(n− 3)

The 4th term is active only for n ≥ 3, the 3d term is active only n ≥ 2, and the 2nd term only
for n ≥ 2. Thus, evaluating at a few n’s we find:

y(n)= [1,7,18,24,24,24,24, . . . ]

The first 3 outputs are the initial transients, the remaining constant values are the steady part.
Note that when you send in a unit step, the output always settles to a constant value (for a
stable filter). That constant value can be easily precalculated as H(1). In the present case,
H(1)= 1+ 6+ 11+ 6 = 24. For the alternating step, we have:

Y(z) = 1+ 6z−1 + 11z−2 + 6z−3

1+ z−1
= 1+ 5z−1 + 6z−2

y(n) = [1,5,6,0,0,0, · · · ]

There is a pole zero cancellation: the filter has a zero at z = −1, cutting off the high-frequency
input.

b. Noting that the input z-transform is X(z)= 1/(1− z−1), we find

Y(z)= H(z)X(z)= 1− z−4

1− z−1
= 1+ z−1 + z−2 + z−3

where we used the finite geometric series. Inverting, we get

y(n)= [1,1,1,1,0,0,0,0, . . . ]

The first four samples are the transients, the remaining zeros are the steady state. In the
steady-state, the filter cuts off the unit step from going through because the filter has a zero
at z = 1. The pole of the input canceled the zero of the filter. For the alternating step:

Y(z)= 1− z−4

1+ z−1
= 1− z−1 + z−2 − z−3 ⇒ y(n)= [1,−1,1,−1,0,0,0, · · · ]

Again, the filter has a high frequency zero at z = −1, cutting off the high frequency input.
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Problem 12

A digital reverberation processor has frequency response:

H(ω)= −0.5+ e−jω8

1− 0.5e−jω8

whereω is the digital frequency in [radians/sample]. Determine the causal impulse response h(n),
for all n ≥ 0, and sketch it versus n. [Hint: Do not use partial fractions.]

Solution

Because z = ejω, we can deduce the transfer function from H(ω):

H(z)= −0.5+ z−8

1− 0.5z−8

It can be written in a form that can be expanded in powers of z−8:

H(z)= −0.5+ 0.75z−8

1− 0.5z−8
= −0.5+ 0.75z−8

[
1+ 0.5z−8 + 0.52z−16 + 0.53z−24 + · · ·

]
Thus, the impulse response will be

h = [−0.5,0,0,0,0,0,0,0,0.75,0,0,0,0,0,0,0,0.75(0.5),0,0,0,0,0,0,0,0.75(0.5)2, . . . ]

It is depicted below:

-0.5

0

0.75

0.75/2
0.75/4

n

h(n)

...
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Problem 13

The first few Fibonacci numbers are:

h = [0,1,1,2,3,5,8,13,21, . . . ]

where each is obtained by summing the previous two.

a. Determine the linear system H(z) whose causal impulse response is h, and express it as a
rational function in z−1.

b. Using partial fractions, derive an expression for the nth Fibonacci number in terms of the
poles of the above filter.

c. Show that the ratio of two successive Fibonacci numbers converges to the Golden Section, that
is, the positive solution of the quadratic equation φ2 = φ+ 1, namely, φ = (1+√5)/2.

d. Show that the filter’s poles are the two numbers {φ,−φ−1}. Show that the geometric sequence:

y = [0,φ0,φ1,φ2,φ3, . . . ]

satisfies the same recursion as the Fibonacci sequence (for n ≥ 3). Show that y may be con-
sidered to be the output of the filter h for a particular input. What is that input?

Solution

a. The impulse response h(n) satisfies the difference equation:

h(n)= h(n− 1)+h(n− 2)+δ(n− 1) (6)

Indeed, for n ≥ 2 the δ(n− 1) term is absent and each h(n) is the sum of the previous two.
The sequence is properly initialized at n = 0,1:

h(0) = h(−1)+h(−2)+δ(−1)= 0+ 0+ 0 = 0

h(1) = h(0)+h(−1)+δ(0)= 0+ 0+ 1 = 1

Next, we take z-transforms of both sides of Eq. (6) to get H(z):

H(z)= z−1H(z)+z−2H(z)+z−1

because the z-transform of δ(n− 1) is z−1. Solving for H(z):

H(z)= z−1

1− z−1 − z−2

b. The poles of H(z) are the roots of 1− z−1 − z−2 = 0 or

z2 − z− 1 = 0 ⇒ z = 1±√5

2

Denoting the first one by φ, the other one will be:

φ = 1+√5

2
, − 1

φ
= 1−√5

2
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Indeed, we have

− 1

φ
= − 2

1+√5
= − 2(1−√5)

(1+√5)(1−√5)
= −2(1−√5)

1− 5
= 1−√5

2

Performing a partial fraction expansion on H(z), we get:

H(z)= z−1

1− z−1 − z−2
= z−1

(1−φz−1)(1+φ−1z−1)
= A

1−φz−1
+ B

1+φ−1z−1

where

A =
[

z−1

1+φ−1z−1

]
z=φ

= φ−1

1+φ−2
= 1√

5

B =
[

z−1

1−φz−1

]
z=−φ−1

= − φ
1+φ2

= − 1√
5

Taking the causal inverse z-transform, we obtain a closed-form solution for the nth Fibonacci
number:

h(n)= Aφn + B(−φ)−n , n ≥ 0

It is unstable because φ is greater than 1 (note, φ � 1.618).

c. For large n, the exponentially increasing term φn dominates the expression. Therefore, the
ratio of two successive Fibonacci numbers will tend to:

h(n+ 1)
h(n)

→ Aφn+1

Aφn
= φ

This can also be seen from the difference equation of h(n). For n ≥ 1, we have

h(n+ 1)= h(n)+h(n− 1)

Dividing by h(n− 1), we have:

h(n+ 1)
h(n− 1)

= h(n)
h(n− 1)

+ 1 or,

h(n+ 1)
h(n)

· h(n)
h(n− 1)

= h(n)
h(n− 1)

+ 1

If we denote the ratio r(n)= h(n+ 1)/h(n), we may write this as:

r(n)r(n− 1)= r(n− 1)+1

The limiting value r(n)→ r will satisfy the limiting equation:

r2 = r + 1

which is the same as that satisfied by φ. Thus, r = φ because they are the positive solutions.
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d. The sequence y(n) satisfies the recursion y(n)= y(n−1)+y(n−2) for n ≥ 3. Indeed, using
the property φ2 = φ+ 1 and successively multiplying it by powers of φ, we get

y(3) = φ2 = φ+ 1 = y(2)+y(1)
y(4) = φ3 = φ2 +φ = y(3)+y(2)
y(5) = φ4 = φ3 +φ2 = y(4)+y(3)

· · ·

The z-transform of y(n) will be the once-delayed z-transform of the geometric series, that is,

Y(z)= z−1

1−φz−1

Thinking ofY(z) as the output ofH(z) for a particular inputX(z), we haveY(z)= H(z)X(z),
which may be solved for X(z):

X(z)= Y(z)
H(z)

=
z−1

1−φz−1

z−1

(1−φz−1)(1+φ−1z−1)

= 1+φ−1z−1

which gives the sequence:

x(n)= δ(n)+φ−1δ(n− 1) or x = [1,φ−1,0,0,0,0 . . . ]
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Problem 14

For a particular causal filter, it is observed that the input signal (0.5)nu(n) produces the output
signal (0.5)nu(n)+(0.4)nu(n). What input signal produces the output signal (0.4)nu(n)?

Solution

The input and output z-transforms are:

X1(z) = 1

1− 0.5z−1

Y1(z) = 1

1− 0.5z−1
+ 1

1− 0.4z−1
= 2(1− 0.45z−1)
(1− 0.5z−1)(1− 0.4z−1)

It follows that transfer function is:

H(z)= Y1(z)
X1(z)

= 2(1− 0.45z−1)
1− 0.4z−1

Therefore, the second output, having z-transform

Y2(z)= 1

1− 0.4z−1

will be produced by

X2(z)= Y2(z)
H(z)

= 0.5
1− 0.45z−1

⇒ x2(n)= 0.5(0.45)nu(n)
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Problem 15

The signal (0.7)nu(n) is applied to the input of an unknown causal LTI filter, and the signal
(0.7)nu(n)+(0.5)nu(n) is observed at the output. What is the causal input signal that will cause
the output (0.5)nu(n)? What is the transfer function H(z) of the system? Determine its causal
impulse response h(n), for all n ≥ 0.

Solution

The input and output z-transforms are:

X(z) = 1

1− 0.7z−1

Y(z) = 1

1− 0.7z−1
+ 1

1− 0.5z−1
= 2(1− 0.6z−1)
(1− 0.7z−1)(1− 0.5z−1)

Therefore the transfer function will be:

H(z)= Y(z)
X(z)

= 2(1− 0.6z−1)
1− 0.5z−1

Expanding in partial fractions, we have:

H(z)= 2(1− 0.6z−1)
1− 0.5z−1

= 2.4− 0.4
1− 0.5z−1

which has the causal inverse:
h(n)= 2.4δ(n)−0.4(0.5)nu(n)

If the output is y(n)= (0.5)nu(n), then,

Y(z)= 1

1− 0.5z−1

and the required input would be,

X(z)= Y(z)
H(z)

= 0.5
1− 0.6z−1

⇒ x(n)= 0.5(0.6)nu(n)
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Problem 16

A digital filter has transfer function,

H(z)= 3− 3z−1 − z−2

1− 1.5z−1 − z−2

Determine all possible impulse responses h(n), for all n, and the corresponding ROCs.

Solution

The filter poles are at z = 2,−0.5. Thus,

H(z)= 3− 3z−1 − z−2

1− 1.5z−1 − z−2
= 3− 3z−1 − z−2

(1− 2z−1)(1+ 0.5z−1)

Expanding in partial fractions, we have:

H(z)= 3− 3z−1 − z−2

(1− 2z−1)(1+ 0.5z−1)
= A+ B

1− 2z−1
+ C

1+ 0.5z−1

where,

A =
[

3− 3z−1 − z−2

1− 1.5z−1 − z−2

]
z=0

= 1

B =
[

3− 3z−1 − z−2

1+ 0.5z−1

]
z=2

= 1

C =
[

3− 3z−1 − z−2

1− 2z−1

]
z=−0.5

= 1

The three possible ROCs and corresponding inverses are:

|z| > 2, h(n)= Aδ(n)+B2nu(n)+C(−0.5)nu(n)

0.5 < |z| < 2, h(n)= Aδ(n)−B2nu(−n− 1)+C(−0.5)nu(n)

|z| < 0.5, h(n)= Aδ(n)−B2nu(−n− 1)−C(−0.5)nu(−n− 1)

Only the second one is stable. Its ROC contains the unit circle.
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Problem 17

A discrete-time system is described by the difference equation,

y(n)= 2.5y(n− 1)−y(n− 2)+3x(n)+3x(n− 2)

Using z-transforms, find all possible impulse responses h(n) and indicate their causality and
stability properties.

For the causal filter, determine the output y(n) if the input is x(n)= g(n)−2g(n − 1), where
g(n)= cos(πn/2)u(n).

Solution

The transfer function is obtained from the I/O difference equation by taking z-transforms of both
sides and solving for the ratio Y(z)/X(z):

Y(z)= 2.5z−1Y(z)−z−2Y(z)+3X(z)+3z−2X(z) ⇒ H(z)= Y(z)
X(z)

= 3(1+ z−2)
1− 2.5z−1 + z−2

Factoring the denominator into its poles and expanding in partial fractions, we get:

H(z)= 3(1+ z−2)
1− 2.5z−1 + z−2

= 3(1+ z−2)
(1− 2z−1)(1− 0.5z−1)

= A+ B
1− 2z−1

C
1− 0.5z−1

where,

A =
[

3(1+ z−2)
1− 2.5z−1 + z−2

]
z=0

= 3

B =
[

3(1+ z−2)
1− 0.5z−1

]
z=2

= 5

C =
[

3(1+ z−2)
1− 2z−1

]
z=0.5

= −5

Thus, the ROCs and corresponding inverses are:

|z| > 2, h(n)= Aδ(n)+B2nu(n)+C(0.5)nu(n)
0.5 < |z| < 2, h(n)= Aδ(n)−B2nu(−n− 1)+C(0.5)nu(n)

|z| < 0.5, h(n)= Aδ(n)−B2nu(−n− 1)−C(0.5)nu(−n− 1)

The z-transform of the signal g(n) is:

g(n)= cos(πn/2)u(n) Z−→ G(z)= 1

1+ z−2

Therefore, the z-transform of the input x(n) will be:

x(n)= g(n)−2g(n− 1) Z−→ X(z)= G(z)−2z−1G(z)= (1− 2z−1)G(z)= 1− 2z−1

1+ z−2

Thus, the output z-transform will be:

Y(z)= H(z)X(z)= 3(1+ z−2)
(1− 2z−1)(1− 0.5z−1)

· 1− 2z−1

1+ z−2
= 3

1− 0.5z−1

Inverting causally, we find:
y(n)= 3(0.5)nu(n)
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Problem 18

A digital sawtooth generator filter has a periodic causal impulse response:

h = [0,1,2,3︸ ︷︷ ︸
period

, 0,1,2,3, 0,1,2,3, · · · ]

where the dots indicate the periodic repetition of the length-4 sequence {0,1,2,3}.

a. Determine the transfer function H(z) and the corresponding ROC.

b. Draw the direct and canonical realization forms. FactorH(z) into second-order sections with
real coefficients. Draw the corresponding cascade realization.

c. For each of the above three realizations, write the corresponding I/O time-domain difference
equations and sample-by-sample processing algorithms.

d. Using partial fractions, do an inverse z-transform of H(z) and determine a closed form ex-
pression for the above impulse response h(n) in the form,

h(n)= A+ B(−1)n+2C cos
(
πn
2

)
+ 2D sin

(
πn
2

)
, n ≥ 0

What are the values of A,B,C,D ?

Solution

The periodic impulse response may be thought of as the sum of the delayed replicas of one period,

h(n)= g(n)+g(n− 4)+g(n− 8)+g(n− 12)+· · ·

where g(n)= [0,1,2,3] is the basic period of length 4. Taking z-transforms we obtain:

H(z)= G(z)+z−4G(z)+z−8G(z)+z−12G(z)+· · · = (1+ z−4 + z−8 + z−12 + · · · )G(z)
where G(z)= z−1 + 2z−2 + 3z−3. Using the geometric series on the first factor, we have,

H(z)= (1+ z−4 + z−8 + · · · )G(z)= G(z)
1− z−4

with convergence ROC, |z| > 1. Thus,

H(z)= z
−1 + 2z−2 + 3z−3

1− z−4

The direct and canonical realizations are shown below.

x y

2

3

z-1

z-1

z-1

x y

2

3

w0

w1

w2

w3

w4

z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1
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The sample-by-sample processing algorithm for the canonical case is:

for each input sample x do:
w0 = x+w4

y = w1 + 2w2 + 3w3

w4 = w3

w3 = w2

w2 = w1

w1 = w0

The cascade realization is obtained by factoring the numerator and denominator into the 1st and/or
2nd order polynomials:

H(z)= z
−1 + 2z−2 + 3z−3

1− z−4
=
[

z−1

1− z−2

][
1+ 2z−1 + 3z−2

1+ z−2

]
≡ H0(z)H1(z)

The block diagram is shown below. The corresponding sample processing algorithm is:

for each input x do:
w0 = x+w2

x1 = w1

w2 = w1

w1 = w0

v0 = x1 − v2

y = v0 + 2v1 + 3v3

v2 = v1

v1 = v0

x w0

w1

w2

z-1

z-1

x1 y

3

-1

2

v0

v1

v2

z-1

z-1

H0(z) H1(z)

Using partial fractions, we may write:

H(z) = z
−1 + 2z−2 + 3z−3

1− z−4
= z−1 + 2z−2 + 3z−3

(1− z−1)(1+ z−1)(1− jz−1)(1+ jz−1)

= A
1− z−1

+ B
1+ z−1

+ C− jD
1− jz−1

+ C+ jD
1+ jz−1

where the PFE coefficients C± jD are conjugates. The numerical values are:

A =
[

z−1 + 2z−2 + 3z−3

(1+ z−1)(1− jz−1)(1+ jz−1)

]
z=1

= 1.5

B =
[

z−1 + 2z−2 + 3z−3

(1− z−1)(1− jz−1)(1+ jz−1)

]
z=−1

= −0.5

C− jD =
[

z−1 + 2z−2 + 3z−3

(1− z−1)(1+ z−1)(1+ jz−1)

]
z=j
= −0.5+ j0.5
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Taking (causal) inverse z-transforms, we find for n ≥ 0,

h(n) = A+ B(−1)n+(C− jD)jn + (C+ jD)(−j)n

= A+ B(−1)n+2Re
[
(C− jD)jn] , and using, j = ejπ/2

= A+ B(−1)n+2Re
[
(C− jD)ejπn/2

]

= A+ B(−1)n+2C cos
(
πn
2

)
+ 2D sin

(
πn
2

)

= 1.5− 0.5(−1)n− cos
(
πn
2

)
− sin

(
πn
2

)

Evaluating this at the first couple of periods, from n = 0 to n = 7, we verify:

h(n)= [0,1,2,3, 0,1,2,3, . . . ]
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Problem 19

A causal filter has transfer function: H(z)= 1+ z−1 + z−2 + z−3

1− z−2
.

a. Determine the numerical values of the causal impulse response h(n), for all n ≥ 0.

b. Draw the canonical realization form of this filter and write the sample processing algorithm
describing it.

Solution

The expansion of the denominator, will cause the period-2 replication of the numerator. Because
the numerator has length 4, its period-2 replicas will overlap with each other and must be added
together:

H(z) = 1+ z−1 + z−2 + z−3

1− z−2

= (1+ z−2 + z−4 + z−6 + · · · )(1+ z−1 + z−2 + z−3)

= (1+ z−1 + z−2 + z−3)+z−2(1+ z−1 + z−2 + z−3)+z−4(1+ z−1 + z−2 + z−3)+ · · ·
or, in the time domain:

h =[1,1,1,1,0,0,0,0,0,0,0,0, . . . ]
+[0,0,1,1,1,1,0,0,0,0,0,0, . . . ] (delayed by 2)

+[0,0,0,0,1,1,1,1,0,0,0,0, . . . ] (delayed by 4)

+[0,0,0,0,0,0,1,1,1,1,0,0, . . . ] + · · · (delayed by 6, etc.)

· · ·
=[1,1,2,2,2,2,2,2,2,2,2,2, . . . ]

The canonical realization and sample processing algorithm are:

x y
w0

w1

w2

w3

z-1

z-1

z-1

for each input x do:
w0 = x+w2

y = w0 +w1 +w2 +w3

w3 = w2

w2 = w1

w1 = w0

More analytically, we have the simplifications,

H(z)= (1+ z
−1)+z−2(1+ z−1)

(1− z−1)(1+ z−1)
= 1+ z−1

(1− z−1)(1+ z−1)
+ z−2(1+ z−1)
(1− z−1)(1+ z−1)

= 1

1− z−1
+ z−2

1− z−1

Thus, the causal inverse is,

h(n)= u(n)+u(n− 2)= [1,1,2,2,2,2,2,2,2,2,2,2, . . . ]

since the term u(n− 2) kicks in after n ≥ 2.
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Problem 20

Consider a causal/stable filter

H(z)= N(z)
(1− p1z−1)(1− p2z−1)· · · (1− pMz−1)

where there are M distinct poles inside the unit circle |pi| < 1, and the numerator N(z) is a poly-
nomial in z−1 of degree strictly less than M.

a. Show that the impulse response can be expressed in the form:

h(n)=
M∑
i=1

Ai pni u(n), where Ai = N(pi)∏
j �=i
(1− pjp−1

i )

b. The input-on sinusoidal behavior of such filter may be studied by applying to it a one-sided
sinusoid of frequencyω0 that starts at n = 0 and continues to n = ∞. Similarly, the input-off
behavior may be studied by applying a sinusoid that has been on since n = −∞ and turns off
at n = 0. Using z-transforms, and clarifying the proper ROCs, show that the corresponding
outputs are in the two cases,

ejω0nu(n) H−→ y(n)= H(ω0)ejω0nu(n)+
M∑
i=1

Bi pni u(n)

ejω0nu(−n− 1) H−→ y(n)= H(ω0)ejω0nu(−n− 1)−
M∑
i=1

Bi pni u(n)

Thus, the transient behavior for n ≥ 0 is the same in both cases except for a sign. Show that
the coefficients Bi are related to Ai of part (a), by

Bi = Ai
1− ejω0p−1

i
, i = 1,2, . . . ,M

c. Using the results of part (b) and linear superposition, derive the standard sinusoidal steady-
state result of Eq. (5).

Solution

a. The PF expansion of H(z) is of the form:

H(z)= N(z)
M∏
i=1

(1− piz−1)

=
M∑
i=1

Ai
1− piz−1

where the i-th coefficient is obtained by deleting the factor (1−piz−1) from the left-hand side
and evaluating the remainder at z = pi, that is,

Ai =

⎡
⎢⎢⎢⎣ N(z)∏
j �=i
(1− pjz−1)

⎤
⎥⎥⎥⎦
z=pi

= N(pi)∏
j �=i
(1− pjp−1

i )

Taking causal inverse z-transforms, we find for h(n):

h(n)=
M∑
i=1

Ai pni u(n)
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b. The z-transforms of the causal and anticausal sinusoidal inputs are the same up to a negative
sign:

ejω0nu(n) Z−→ 1

1− ejω0z−1

ejω0nu(−n− 1) Z−→ − 1

1− ejω0z−1

with ROCs |z| > 1 and |z| < 1, respectively. The output z-transform will beY(z)= H(z)X(z).
Thus, in the two cases:

Y(z)= ± N(z)

(1− ejω0z−1)
M∏
i=1

(1− piz−1)

The partial fraction expansion leads to

Y(z)= ± C
1− ejω0z−1

±
M∑
i=1

Bi
1− piz−1

whereC = H(ω0), as discussed in class, and Bi are obtained by deleting the factor (1−piz−1)
and evaluating the rest at z = pi:

Bi =

⎡
⎢⎢⎢⎣ N(z)
(1− ejω0z−1)

∏
j �=i
(1− pjz−1)

⎤
⎥⎥⎥⎦
z=pi

= N(pi)

(1− ejω0p−1
i )

M∏
j �=i
(1− pjp−1

i )

Comparing with the result of part (a), we have:

Bi = Ai
1− ejω0p−1

i

To get the inverse z-transform y(n), we must assume a particular ROC. For the causal case,
we take the ROC to be |z| > 1, so that all the PFE terms will be inverted causally. For the
anticausal case, we take the filter part to be causal and the input anticausal, that is, the ROC
will be the annular region between the maximum pole and the unit circle:

max
i
|pi| < |z| < 1

In this case the C term will be inverted anticausally and the Bi terms causally. These choices
for the ROCs, give:

y(n) = H(ω0)ejω0nu(n)+
M∑
i=1

Bipni u(n)

y(n) = H(ω0)ejω0nu(−n− 1)−
M∑
i=1

Bipni u(n)

d. Adding up the right-sided and left-sided sinusoidal inputs gives rise to the double-sided input:

ejω0nu(n)+ejω0nu(−n− 1)= ejω0n
(
u(n)+u(−n− 1)

) = ejω0n , −∞ < n <∞

where, we used the property u(n)+u(−n−1)= 1 for all n. It follows from the linearity of the
filter that the corresponding output will be the sum of the two outputs obtained above. The
Bi terms will be canceling, and we obtain,
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y(n)=H(ω0)ejω0nu(n)+
M∑
i=1

Bipni u(n)

+H(ω0)ejω0nu(−n− 1)−
M∑
i=1

Bipni u(n)

=H(ω0)ejω0nu(n)+H(ω0)ejω0nu(−n− 1)

=H(ω0)ejω0n
(
u(n)+u(−n− 1)

) = H(ω0)ejω0n

which is recognized as the standard steady-state sinusoidal response of the filter.

The time-constant of the filter is determined by how quickly the transient terms Bi pni decay
to zero. In particular, the term that survives the longest is the one that has the largest pole
radius, that is, maxi |pi|, which is the pole that lies closest to the unit circle from inside.

To quantify the time constant, let R = maxi |pi|, which is less that unity by assumption,
R < 1. The longest surviving term then will behave like Rn and we can declare it to be small
or negligible when it drops in magnitude to below some small user-specified level, say, ε, such
as, ε = 10−2, or, ε = 10−3. This gives the following condition, defining the effective time neff

beyond which we can ignore the transient terms,

Rneff = ε ⇒ neff = ln ε
lnR

(effective time-constant in samples) (7)

Since in dB, the choice, ε = 10−2 = 10−40/20 is, εdB = −20 log10 ε = 40 dB, the neff correspond-
ing to that choice is referred to as the “40-dB time constant”.

Similarly, the choice, ε = 10−3 has εdB = −20 log10 ε = 60 dB, and is referred to as the “60-
dB time constant”. This choice is used widely in quantifying the time constants of listening
spaces, such as concert halls.
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