
332:345 – Linear Systems & Signals – Fall 2018

Set 5 – Numerical Examples – S. J. Orfanidis

In this set, we consider the numerical implementation of the examples of Set-4 by converting
their analog transfer functions into digital ones and implementing them in MATLAB as difference
equations, and comparing their output with that of the built-in function lsim.

The following discretization schemes are considered, which will be discussed in more detail
in class, see also the Appendix of this set: (i) forward Euler, (ii) backward Euler, (iii) trapezoidal,
also known as bilinear or Tustin transformation, and (iv) zero-order hold. Below, we summarize
the design equations for all four methods, for first-order and second-order systems. The built-in
functions c2dm and c2d can also be used to convert a continuous-time system to an equivalent
discrete-time one, however, they do not include the forward and backward Euler methods. But they
do include the trapezoidal (Tustin) and zero-order hold (the default) methods.

The function lsim is used for simulating the behavior of continuous-time systems, but it can-
not be used to actually replace the continuous-time system by an equivalent discrete-time one that
can then be implemented digitally, for example, on a digital signal processor. Moreover, lsim, and
MATLAB in general, process signals on a block basis and are not so well-suited for real-time pro-
cessing. However, once the equivalent discrete-time transfer function is available, it can easily be
implemented in real-time. The examples in this set demonstrate how to do this.

Summary of Discretization Schemes

For a second-order system with analog transfer function Ha(s),

ÿ(t)+A1 ẏ(t)+A2y(t)= B0 ẍ(t)+B1 ẋ(t)+B2x(t) ⇒ Ha(s)= B0s2 + B1s+ B2

s2 +A1s+A2
(1)

the equivalent discrete-time difference equation is also 2nd order and has the following form with
a discrete transfer function Hd(z),

yn + a1yn−1 + a2yn−2 = b0xn + b1xn−1 + b2xn−2 ⇒ Hd(z)= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
(2)

where yn is an approximation to the value of y(t) at the sampling instant tn = nT, where T is a
small time increment, and xn is the value of the input at t = tn, that is,

yn ≈ y(tn)= y(nT) , xn = x(tn)= x(nT) , n = 0,1,2, . . .

The relationship between the coefficients {b0, b1, b2, a1, a2} and {B0, B1, B2,A1,A2} depends
on the value of T and the chosen discretization scheme. The difference equation can be iterated by
writing it in the following form,

for n = 0,1,2, . . . ,

yn = −a1yn−1 − a2yn−2 + b0xn + b1xn−1 + b2xn−2

(3)

where the two previously computed outputs, yn−2, yn−1, help compute the current one, yn. For
example, we have explicitly for n = 0,1,2,3,

y0 = −a1y−1 − a2y−2 + b0x0 + b1x−1 + b2x−2

y1 = −a1y0 − a2y−1 + b0x1 + b1x0 + b2x−1

y2 = −a1y1 − a2y0 + b0x2 + b1x1 + b2x0

y3 = −a1y2 − a2y1 + b0x3 + b1x2 + b2x1 , and so on,

To get the iteration going, we need to know the two initial values y−1, y−2. The values of
x−1, x−2 can be taken to be zero since we assume a causal input. Because the given initial con-
ditions y(0−), ẏ(0−) of the differential equation are specified at t = 0−, and T is small, we may
choose the starting values as follows,

1



y−1 ≈ y(0−)
y−2 ≈ y(0−)−Tẏ(0−) (4)

The second my be justified by the following approximation of the derivative,

ẏ(0−)≈ y(−T)−y(−2T)
T

≈ y−1 − y−2

T
⇒ y−2 ≈ y−1 −Tẏ(0−)

Similarly, for a first-order system we have the differential and corresponding difference equations,

ẏ(t)+A1y(t)= B0 ẋ(t)+B1x(t) ⇒ Ha(s)= B0s+ B1

s+A1
(5)

yn + a1yn−1 = b0xn + b1xn−1 ⇒ Hd(z)= b0 + b1z−1

1+ a1z−1
(6)

and iterated by writing it in the following form,

for n = 0,1,2, . . . ,

yn = −a1yn−1 + b0xn + b1xn−1

(7)

where now only the starting value y−1 is needed, and we may choose it as in Eq. (4),

y−1 ≈ y(0−) (8)

Forward-Euler, Backward-Euler, and Trapezoidal Rules

The three cases can be handled together and are obtained by replacing the s variable in the analog
transfer function Ha(s) by the following transformation in terms of the variable z,

s = 1− z−1

p+ qz−1
= z− 1

pz+ q ⇒ Hd(z)= Ha(s)
∣∣∣∣
s= 1−z−1

p+qz−1

= Ha
(

1− z−1

p+ qz−1

)
(9)

where p,q are defined as follows in the three cases, in terms of the discretization time step T,

forward Euler: p = 0 , q = T ⇒ s = 1

T
(z− 1)

backward Euler: p = T , q = 0 ⇒ s = 1

T
(1− z−1)

trapezoidal/bilinear/Tustin: p = q = 1

2
T ⇒ s = 2

T
1− z−1

1+ z−1

(10)

The mapping between the coefficients {b0, b1, b2, a1, a2} and {B0, B1, B2,A1,A2} is obtained
from the algebraic relationship,

b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
= B0s2 + B1s+ B2

s2 +A1s+A2

∣∣∣∣∣
s= 1−z−1

p+qz−1

=
B0

(
1− z−1

p+ qz−1

)2

+ B1

(
1− z−1

p+ qz−1

)
+ B2(

1− z−1

p+ qz−1

)2

+A1

(
1− z−1

p+ qz−1

)
+A2

The algebra can be carried out quickly with the symbolic toolbox,

syms B0 B1 B2 A1 A2 s z p q
H = (B0*s^2 + B1*s + B2)/(s^2 + A1*s + A2);
Hd = collect(subs(H,s,(1-z)/(p+q*z)))
symdisp(Hd) % symdisp is on Sakai Resources
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and we obtain the following relationships that depend on the choices of p,q,

b0 = B0 + B1p+ B2p2

1+A1p+A2p2
, b1 = B1(q− p)−2B0 + 2B2pq

1+A1p+A2p2
, b2 = B0 − B1q+ B2q2

1+A1p+A2p2

a1 = A1(q− p)−2+ 2A2pq
1+A1p+A2p2

, a2 = 1−A1q+A2q2

1+A1p+A2p2

(11)

For the first-order case, we define similarly,

b0 + b1z−1

1+ a1z−1
= B0s+ B1

s+A1

∣∣∣∣
s= 1−z−1

p+qz−1

which leads to,

b0 = B0 + B1p
1+A1p

, b1 = B1q− B0

1+A1p
, a1 = A1q− 1

1+A1p
(12)

Zero-Order Hold Method

The justification of the zero-order hold design procedure will be discussed in class. The correspond-
ing discrete-time transfer function is defined by,

Hd(z)= (1− z−1)·Z
[
Ha(s)
s

]
(13)

where Z[G(s)] denotes the z-transform of G(s), a notation and operation to be clarified in class.
This formula leads to the following computational steps.

Step 1: Start with the analog transfer function Ha(s), then form Ha(s)/s, and expand it in partial
fractions. For example, for a first-order transfer function we have,

Ha(s)= B0s+ B1

s+ p1
⇒ Ha(s)

s
= B0s+ B1

s(s+ p1)
= R0

s
+ R1

s+ p1
(14)

with residues,

R0 = B1

p1
, R1 = B0 − B1p1

p1
(15)

Similarly, for a second-order transfer function with two distinct poles (p1 �= p2), we obtain,

Ha(s)= B0s2 + B1s+ B2

(s+ p1)(s+ p2)
⇒ Ha(s)

s
= B0s2 + B1s+ B2

s(s+ p1)(s+ p2)
= R0

s
+ R1

s+ p1
+ R2

s+ p2
(16)

where the residues are given by,

R0 = B2

p1p2
, R1 = B0p2

1 − B1p1 + B2

p1(p1 − p2)
, R2 = B0p2

2 − B1p2 + B2

p2(p2 − p1)
(17)

while for the case of a double-pole, we have,

Ha(s)= B0s2 + B1s+ B2

(s+ p1)2
⇒ Ha(s)

s
= B0s2 + B1s+ B2

s(s+ p1)2
= R0

s
+ R1

s+ p1
+ R2

(s+ p2)2
(18)

with residues,

R0 = B2

p2
1
, R1 = B0p2

1 − B2

p2
1

, R2 = −B0p2
1 − B1p1 + B2

p1
(19)
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Step 2: Replace single- and double-pole terms as follows in terms of z (applicable also when p1 = 0),

1

s+ p1
⇒ 1

1− e−p1Tz−1

1

(s+ p1)2
⇒ Tz−1

(1− e−p1Tz−1)2

(20)

Step 3: After making these replacements, multiply by an overall factor of (1 − z−1) to obtain the
final transfer function. Thus, for the first-order case, we have,

Hd(z)= (1− z−1)
[

R0

1− z−1
+ R1

1− e−p1Tz−1

]
= R0 + R1(1− z−1)

1− e−p1Tz−1
≡ b0 + b1z−1

1+ a1z−1
(21)

which after replacing R0, R1 in terms of B0, B1, p1, gives,

b0 = B0 , b1 = −B0p1 − B1 + B1e−p1T

p1
, a1 = −e−p1T (1st order) (22)

Similarly, the second-order case with distinct poles gives,

Hd(z)= (1− z−1)
[

R0

1− z−1
+ R1

1− e−p1Tz−1
+ R2

1− e−p2Tz−1

]
≡ b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
(23)

where,

b0 = R0 +R1 +R2 = B0

b1 = −R1 −R2 −R1e−p2T −R2e−p1T −R0(e−p1T + e−p2T)

b2 = R1e−p2T +R2e−p1T +R0e−p1Te−p2T

a1 = −e−p1T − e−p2T , a2 = e−p1Te−p2T

(2nd order) (24)

with R0, R1, R2 given by Eq. (17). Lastly, for the case of a double-pole, we have,

Hd(z)= (1− z−1)
[

R0

1− z−1
+ R1

1− e−p1Tz−1
+ R2Tz−1

(1− e−p2Tz−1)2

]
≡ b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
(25)

where, with R0, R1, R2 given by Eq. (19),

b0 = R0 +R1 = B0

b1 = (R2T − 2R0 −R1)e−p1T −R1

b2 = (R1 −R2T +R0e−p1T)e−p1T

a1 = −2e−p1T , a2 = e−2p1T

(2nd order, double pole) (26)

Example

Consider the first-order shelving audio equalizer discussed in class:

ẏ(t)+ay(t)= G0 ẋ(t)+Gax(t) ⇒ Ha(s)= G0s+Ga
s+ a (27)

The application of Eqs. (12) and (22) leads to the following discrete transfer functions,

pq case: Hd(z)=

(
Gap+G0

ap+ 1

)
+
(
Gaq−G0

ap+ 1

)
z−1

1+
(
aq− 1

ap+ 1

)
z−1

zero-order hold: Hd(z)= G0 + (G−Ge−aT −G0)z−1

1− e−aTz−1

(28)
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Sample-by-Sample Processing

Real-time digital processing means the processing of a sampled input signal on a sample-by-sample
basis. Each arriving input sample is subjected to a series of computational steps (referred to as the
sample processing algorithm) that calculate the current output sample. These computations must
be finished within the sampling time interval T that separates incoming time samples.

Modern DSPs are extremely fast and can easily perform hundreds or even thousands of such
operations between samples. For example, for a typical hi-fi audio signal sampled at a rate of 40
kHz (40,000 samples/sec), the time interval between samples is T = 1/40000 sec = 25 μsec. A
modern DSP has an instruction time of about 1 nsec for performing a typical multiplication or
addition. Therefore, during the interval of T = 25 μsec = 25,000 nsec, it can perform, 25,000 basic
instructions, which are more than enough for typical audio processing.

Here, we discuss briefly how to implement a difference equation of the type of Eq. (3) on a sample-
by-sample basis. There are many ways of doing so, each corresponding to a particular block-diagram
realization of the digital transfer function Hd(z). A straightforward way, known as the direct-form
realization, is to implement the difference equation directly as shown in Eq. (3). Let us rewrite it in
the form,

y(n)= −a1y(n− 1)−a2y(n− 2)+b0x(n)+b1x(n− 1)+b2x(n− 2)

We do not want to use any arrays because, for real-time processing, the input and output signals
can have infinite length. But we do need to keep track of two previously computed output samples,
y(n− 1), y(n− 2), and two previously available input samples, x(n− 1), x(n− 2). To this end, let
us use the following notation for these delayed signals,

v1(n)= x(n− 1)
v2(n)= x(n− 2) and

w1(n)= y(n− 1)
w2(n)= y(n− 2)

They may be referred to as the internal “states” of the filter. Then, the difference equation can
be written as a sum of terms, all occurring at the same instant n,

y(n)= −a1w1(n)−a2w2(n)+b0x(n)+b1v1(n)+b2v2(n)

Once the current output y(n) is calculated, the states can be updated to the values that they
must have at the next time instant, n+ 1. From their definition, we see that their next values are,

v1(n+ 1)= x(n)
v2(n+ 1)= x(n− 1)= v1(n)

and
w1(n+ 1)= y(n)
w2(n+ 1)= y(n− 1)= w1(n)

This leads to the following sample by sample processing algorithm that uses the temporary state
variables, w1,w2, v1, v2, which are being updated from one time instant to the next,

initialize w1,w2, v1, v2

for each input sample x, do,

y = −a1w1 − a2w2 + b0x+ b1v1 + b2v2

w2 = w1 , v2 = v1

w1 = y , v1 = x

(29)

where the computational order is important, with w2 being updated before w1, and v2 before v1.
The initial values are typically zero, but they can be chosen as in Eq. (4) if so desired, that is,

w1 = y(0−) , w2 = y(0−)−Tẏ(0−) , v1 = v2 = 0 (30)

Such repetitive algorithm can be programmed very easily in hardware or software. We will use
it in our MATLAB examples below just to illustrate its sample by sample repetitive nature.
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Problem 1

In Problem 1 of Set-4, we considered the following linear system, driven by the input x(t)=
10e−3tu(t), and subject to the initial conditions at t = 0−, y(0−)= 0, ẏ(0−)= −5,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) ⇒ Ha(s)= s
s2 + 3s+ 2

(31)

(a) Determine explicit expressions for the discrete-time coefficients [b0, b1, b2] and [a1, a2]
of the approximating difference equation using both the pq and the zero-older hold
discretization schemes of Eqs. (11) and (24).

(b) Using a sampling time T = 0.01, evaluate the coefficient expressions of part (a) for the
trapezoidal and zero-order hold cases. Then, using the sample processing algorithm of
Eq. (29), compute the output signals by iterating the corresponding difference equations
with zero and non-zero initial conditions as given above, and compare the outputs with
the exact and lsim outputs obtained in Set-4.

Solution

(a) The analog transfer function coefficients are [B0, B1, B2]= [0,1,0], and [A1,A2]= [3,2].
It follows from Eq. (11),

b0 = p
1+ 3p+ 2p2

, b1 = q− p
1+ 3p+ 2p2

, b2 = − q
1+ 3p+ 2p2

a1 = 3(q− p)−2+ 4pq
1+ 3p+ 2p2

, a2 = 1− 3q+ 2q2

1+ 3p+ 2p2

(32)

Similarly for the ZOH case, we find,

b0 = 0 , b1 = (e−T − e−2T) , b2 = −(e−T − e−2T)

a1 = −(e−T + e−2T) , a2 = e−3T
(33)

(b) Evaluating Eq. (32) for T = 0.01, p = q = T/2, we find the coefficients and corresponding
discrete-time transfer function,

[b0, b1, b2]= [0.0049, 0, −0.0049] , [a1, a2]= [−1.9702, 0.9704]

Hd(z)= 0.0049 − 0.0049z−2

1− 1.9702z−1 + 0.9704z−2

Similarly, Eq. (33) gives,

[b0, b1, b2]= [0, 0.0099, −0.0099] , [a1, a2]= [−1.9702, 0.9704]

Hd(z)= 0.0099z−1 − 0.0099z−2

1− 1.9702z−1 + 0.9704z−2

The following MATLAB code segment illustrates the numerical computation,

y0 = 0; dy0 = -5; % initial conditions

T = 0.01; tn = 0:T:6; % discretization times

x = @(t) 10*exp(-3*t).*(t>=0); % input signal

p = T/2; q = T/2; % trapezoidal
b = [p, -(p - q), -q]/(2*p^2 + 3*p + 1);
a = [1, -(3*p - 3*q - 4*p*q + 2)/(2*p^2 + 3*p + 1), ...

(2*q^2 - 3*q + 1)/(2*p^2 + 3*p + 1)];
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% b = [0, exp(-T)-exp(-2*T), -exp(-T)+exp(-2*T)]; % uncomment for ZOH
% a = [1, -exp(-T)-exp(-2*T), exp(-3*T)];

% note that, b = [b(1),b(2),b(3)] is MATLAB array representing [b0,b1,b2]
% similarly, a = [a(1),a(2),a(3)] represents [1,a1,a2]

clear yz
w1 = 0; w2 = 0; % zero-initial conditions
v1 = 0; v2 = 0;
for n=0:length(tn)-1

yz(n+1) = -a(2)*w1 - a(3)*w2 + b(1)*x(n*T) + b(2)*v1 + b(3)*v2;
w2 = w1; v2 = v1;
w1 = yz(n+1); v1 = x(n*T);

end

clear y
w1 = y0; w2 = y0-T*dy0; % non-zero initial conditions
v1 = 0; v2 = 0;
for n=0:length(tn)-1

y(n+1) = -a(2)*w1 - a(3)*w2 + b(1)*x(n*T) + b(2)*v1 + b(3)*v2;
w2 = w1; v2 = v1;
w1 = y(n+1); v1 = x(n*T);

end

figure; plot(tn,y,’b-’, tn,yz,’r--’)
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The resulting graphs are virtually indistinguishable from those of Set-4 for the exact and
lsim cases. To visually observe any difference between the discrete- and continuous-time
cases, you may select a larger T, e.g., T = 0.1.

The difference equation coefficient vectors, b = [b0, b1, b2], and, a = [1, a1, a2], can
also be computed with the help of the MATLAB function c2d2, see Appendix.
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One may wonder also if it is possible to calculate the above output signals using the built-
in MATLAB function filter. For the case of zero-initial conditions, it can be used in the
usual manner, for example, the above zero-state component could be calculated by the
code,

yz = filter(b,a,x(tn));

However, in the case of non-zero conditions, since filter uses the so-called transposed
realization for its implementation, the given initial conditions in terms of y−1 = y(0−),
y−2 = y(0−)−Tẏ(0−), must be mapped to those of the transposed realization.

This can be accomplished with the help of the so-called observability matrix (we will talk
about it later on when we discuss state-space realizations), which can be calculated with
the supplied MATLAB function obsmat in the course functions folder on Sakai, and can
be used to map the initial conditions, for example in the present case,

y0 = 0; dy0 = -5; % initial conditions
T = 0.01; tn = 0:T:6; % discretization times
x = @(t) 10*exp(-3*t).*(t>=0); % input signal

A = tf2ss(b,a)’; % transition matrix for transposed form
si = obsmat(b,a,’t’) \ [y0-T*dy0; y0]; % initial state vector at n=-2
si = A^2 * si; % boost state vector to n=0

% si = [-a(3) -a(2); 0 -a(3)] * [y0-T*dy0; y0]; % alternative, for order-2

y = filter(b,a,x(tn),si); % output with non-zero initial conditions

Because the conditions [y−2, y−1] are specified at n = −2, the state-vector at n = −2
must be boosted to n = 0 with the help of the state-transition matrix A, in order to
be passed as argument to filter. In particular, for a 2nd order case, with denominator
coefficients, a = [1, a1, a2], the state-transition matrix A and observability matrix F of
the transposed realization turn out to be,

A =
[
−a1 1
−a2 0

]
, F =

[
1 0
−a1 1

]

Therefore, the combined operations of inverting F followed by two boosts, becomes,

A2F−1 =
[
−a1 1
−a2 0

][
−a1 1
−a2 0

][
1 0
a1 1

]
=
[
−a2 −a1

0 −a2

]

so that the two-dimensional initial state vector (at n = 0) can be calculated by,

sinit =
[
s1(0)
s2(0)

]
=
[
−a2 −a1

0 −a2

][
y−2

y−1

]

The same can be derived directly from the transposed block diagram realization shown
below and iterating its sample processing algorithm (with zero-input) starting at n = −2
and calculating the state variables

[
s1(0), s2(0)

]
,

yn = b0xn + s1(n)

s1(n+ 1)= b1xn − a1yn + s2(n)

s2(n+ 1)= b2xn − a2yn
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Problem 2

In Problem 2 of Set-2, we had the same system but with input x(t)= 10e−2tu(t), and initial
conditions at t = 0−, y(0−)= 2, ẏ(0−)= −7. Repeat the previous part (b) for T = 0.01 and
the backward Euler and ZOH methods.

Solution

(b) Evaluating Eq. (32) for T = 0.01, p = T, q = 0, we find,

[b0, b1, b2]= [0.0097, −0.0097, 0] , [a1, a2]= [−1.9705, 0.9707]

Hd(z)= 0.0097 − 0.0097z−1

1− 1.9705z−1 + 0.9707z−2

The ZOH values are the same as in the previous problem. The MATLAB code also remains
the same, except for re-defining the initial conditions and the input signal,

y0 = 2; dy0 = -7; % initial conditions

T = 0.01; tn = 0:T:6; % discretization times

x = @(t) 10*exp(-2*t).*(t>=0); % input signal

p = T; q = 0; % backward Euler

% the rest of the code remains the same as in the previous problem
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The resulting graphs are virtually indistinguishable from those of set-4 for the exact and
lsim cases.
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Problem 3

Repeat the previous problem with input x(t)= (
t2 + 5t + 3

)
u(t), and initial conditions at

t = 0−, y(0−)= 2, ẏ(0−)= 0, and using forward Euler and ZOH discretization methods.

Solution

(b) Evaluating Eq. (32) for T = 0.01, p = 0, q = T, we find,

[b0, b1, b2]= [0, 0.0100, −0.0100] , [a1, a2]= [−1.9700, 0.9702]

Hd(z)= 0.0100z−1 − 0.0100z−2

1− 1.9700z−1 + 0.9702z−2

The ZOH values are the same as in the previous problem. The MATLAB code also remains
the same, except for re-defining the initial conditions and the input signal,

y0 = 2; dy0 = 0;

T = 0.01; tn = 0:T:6;
x = @(t) (t.^2 + 5*t + 3).*(t>=0);

p = 0; q = T; % forward Euler

% the rest of the code remains the same as in the previous problem
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The resulting graphs are virtually indistinguishable from those of set-4 for the exact and
lsim cases.
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Problem 4

In Problem 4 of Set-4, we considered the following linear system, driven by the input x(t)=
e−2tu(t), and subject to the initial conditions at t = 0−, y(0−)= 2, ẏ(0−)= −4,

ÿ(t)+4ẏ(t)+3y(t)= 2ẍ(t)+ẋ(t)+x(t) ⇒ Ha(s)= 2s2 + s+ 1

s2 + 4s+ 3
(34)

(a) Determine explicit expressions for the discrete-time coefficients [b0, b1, b2] and [a1, a2]
of the approximating difference equation using both the pq and the zero-older hold
discretization schemes of Eqs. (11) and (24).

(b) Using a sampling time T = 0.01, evaluate the coefficient expressions of part (a) for the
trapezoidal and zero-order hold cases. Then, using the sample processing algorithm of
Eq. (29), compute the output signals by iterating the corresponding difference equations
with zero and non-zero initial conditions as given above, and compare the outputs with
the exact and lsim outputs obtained in Set-4.

Solution

(a) The analog transfer function coefficients are [B0, B1, B2]= [2,1,1], and [A1,A2]= [4,3].
It follows from Eq. (11),

b0 = p2 + p+ 2

1+ 4p+ 3p2
, b1 = q− p− 4+ 2pq

1+ 4p+ 3p2
, b2 = q2 − q+ 2

1+ 4p+ 3p2

a1 = 4(q− p)−2+ 6pq
1+ 4p+ 3p2

, a2 = 3q2 − 4q+ 1

1+ 4p+ 3p2

(35)

Similarly for the ZOH case, we find,

b0 = 2 , b1 = −1

3
(9e−T + 5− 2e−3T) , b2 = 1

3
(8e−T − 3e−3T + e−4T)

a1 = −(e−T + e−3T) , a2 = e−4T
(36)

(b) Evaluating Eq. (35) for T = 0.01, p = q = T/2, we have,

[b0, b1, b2]= [1.9656, −3.9212, 1.9558] , [a1, a2]= [−1.9605, 0.9608]

Hd(z)= 1.9656− 3.9212z−1 − 1.9558z−2

1− 1.9605z−1 + 0.9608z−2

Similarly, Eq. (36) gives,

[b0, b1, b2]= [2, −3.9899, 1.9900] , [a1, a2]= [−1.9605, 0.9608]

Hd(z)= 2− 3.9899z−1 − 1.9900z−2

1− 1.9605z−1 + 0.9608z−2

The following MATLAB code segment illustrates the computation,

y0 = 2; dy0 = -4;

T = 0.01; tn = 0:T:4;

x = @(t) exp(-2*t).*(t>=0); % input signal

p = T/2; q = T/2; % trapezoidal
b = [(p^2 + p + 2), -(p - q - 2*p*q + 4), ...

(q^2 - q + 2)] / (3*p^2 + 4*p + 1);

11



a = [ 1, -(4*p - 4*q - 6*p*q + 2)/(3*p^2 + 4*p + 1), ...
(3*q^2 - 4*q + 1) / (3*p^2 + 4*p + 1)];

% b = [ 2, -(9*exp(-T) + 5 - 2*exp(-3*T))/3, ... % uncomment for ZOH
% (8*exp(-T) - 3*exp(-3*T) + exp(-4*T))/3];
% a = [ 1, -(exp(-T) + exp(-3*T)), exp(-4*T)];

clear yz
w1 = 0; w2 = 0; % zero initial conditions
v1 = 0; v2 = 0;
for n=0:length(tn)-1

yz(n+1) = -a(2)*w1 - a(3)*w2 + b(1)*x(n*T) + b(2)*v1 + b(3)*v2;
w2 = w1; v2 = v1;
w1 = yz(n+1); v1 = x(n*T);

end

clear y
w1 = y0; w2 = y0-T*dy0; % non-zero initial conditions
v1 = 0; v2 = 0;
for n=0:length(tn)-1

y(n+1) = -a(2)*w1 - a(3)*w2 + b(1)*x(n*T) + b(2)*v1 + b(3)*v2;
w2 = w1; v2 = v1;
w1 = y(n+1); v1 = x(n*T);

end

figure; plot(tn,y,’b-’, tn,yz,’r--’)
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Appendix – Discretization Schemes

1. Forward-Euler, Backward-Euler, and Trapezoidal Rules

The forward/backward Euler and trapezoidal discretization rules given in Eqs. (9) and (10) can be
understood intuitively by considering the simple case of an integrator LTI system, that is, one whose
input/output differential equation and solution are,

ẏ(t)= x(t) ⇒ y(t)= y(0−)+
∫ t

0−
x(t′)dt′ , t ≥ 0− (37)

Given a discretization time-step T, then by subtracting the values of y(t) at the two successive
time instants, tn = nT, and, tn−1 = (n− 1)T, we obtain from Eq. (37),

y(tn)−y(tn−1)=
∫ tn
tn−1

x(t)dt (38)

which represents the area under the curve x(t) over the subinterval [tn−1, tn]. The three discretiza-
tion rules arise by approximating this area in three slightly different ways, as shown below.

In the forward Euler case, the area is approximated by the rectangle of baseT and height equal to
the left sample x(tn−1), extrapolated forward. In the backward Euler case, the right sample x(tn) is
extrapolated backward defining a rectangular area of base T. In the trapezoidal case, the two points
x(tn−1), x(tn) are connected by a straight line forming a trapezoid of base T (its area is the average
of the heights times the base). Thus, the three approximations lead to the difference equations,

forward Euler: y(tn)−y(tn−1)= T · x(tn−1)

backward Euler: y(tn)−y(tn−1)= T · x(tn)

trapezoidal: y(tn)−y(tn−1)= T · x(tn−1)+x(tn)
2

And, introducing the p,q definitions of Eq. (10), the above may be written in a unified compact way,

yn − yn−1 = pxn + qxn−1 (39)

where we denoted x(tn) by xn and similarly for yn. In the z-domain this leads to the discrete-time
transfer function,

Hd(z)= Y(z)
X(z)

= p+ qz−1

1− z−1
(40)

and if we compare it with the original continuous-time transfer function of the integrator, that is,

Ha(s)= Y(s)
X(s)

= 1

s
(41)

we obtain the identification of the s variable in terms of z as given by Eq. (9), in the sense that Eq. (40)
acts as if it were the integrator (41),

1

s
= p+ qz−1

1− z−1
⇒ s = 1− z−1

p+ qz−1
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Another way to justify the mapping of Eq. (9) is to recall that the z-transform of a sampled signal
x(tn) can be viewed as the Laplace transform of the ideally-sampled version of x(t), that is, for a
causal signal,

x̂(t) =
∑
n≥0

x(tn)δ(t − tn)=
∑
n≥0

x(nT)δ(t − nT)

X̂(s) =
∫∞

0−
x̂(t)e−stdt =

∫∞
0−

∑
n≥0

x(tn)δ(t − tn)e−stdt =
∑
n≥0

x(tn)
∫∞

0−
δ(t − nT)e−stdt

=
∑
n≥0

x(tn)e−sTn =
∑
n≥0

x(tn)z−n = X(z)

provided we define z = esT. The three integration rules are obtained by making three simple
rational approximations of this relationship. They are based on the following small-x Taylor series
expansions of the exponential, that is,

ex ≈ 1+ x

ex = 1

e−x
≈ 1

1− x

ex = ex/2

e−x/2
≈ 1+ x/2

1− x/2
It follows that since T is small, we may make the same approximations,

z = esT ≈ 1+ sT ⇒ s = 1

T
(z− 1) forward Euler

z = esT = 1

e−sT
≈ 1

1− sT ⇒ s = 1

T
(1− z−1) backward Euler

z = esT = esT/2

e−sT/2
≈ 1+ sT/2

1− sT/2 ⇒ s = 2

T
1− z−1

1+ z−1
trapezoidal

2. Zero-Order Hold

Here, we discuss briefly the three-step design procedure of the zero-order hold discretization scheme
resulting in Eq. (13),

Hd(z)= (1− z−1)·Z
[
Ha(s)
s

]
(zero-order hold) (42)

where the notation, Gd(z)= Z[G(s)], denotes the z-transform of G(s), or more accurately, the
z-transform of the sampled version of the inverse Laplace transform of G(s), or, pictorially,

G(s) L−1−→ g(t) sample−→ g(nT) Z−→ Gd(z)=
∑
n
g(nT)z−n (43)

Let us assume that the LTI system has a proper transfer function Ha(s) with M distinct poles
lying in the left-hand s-plane, and assume that its PFE expansion has already been made in the form,

Ha(s)= R0 +
M∑
i=1

Ri
s+ pi (44)

with Re(pi)> 0, so that the corresponding causal impulse response is,

h(t)= R0δ(t)+
M∑
i=1

Rie−pitu(t) (45)
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Then, the zero-state output due to a causal input x(t) will be, for t ≥ 0,

y(t)=
∫ t

0−
h(t − t′)x(t′)dt′ =

∫ t
0−

[
R0δ(t − t′)+

M∑
i=1

Rie−pi(t−t
′)u(t − t′)]x(t′)dt′ , or,

y(t)= R0x(t)+
M∑
i=1

Ri e−pit
∫ t

0
epit

′
x(t′)dt′︸ ︷︷ ︸

yi(t)

= R0x(t)+
M∑
i=1

Riyi(t) (46)

It follows from the definition of the partial output yi(t) after evaluating it at the two successive
time instants tn = nT and tn−1 = (n− 1)T, that it will satisfy the exact relationship,

yi(tn)−e−piT yi(tn−1)= e−pitn
∫ tn
tn−1

epit
′
x(t′)dt′ (47)

The zero-order hold approximation consists of holding the value of x(t′) constant at x(tn−1)
over the small time interval [tn−1, tn], that is, replacing x(t′)≈ x(tn−1) within the integral (47). The
t′ integration then can be done explicitly,

e−pitn
∫ tn
tn−1

epit
′
dt′ = e−pitn e

pitn − epitn−1

pi
= 1− e−pi(tn−tn−1)

pi
= 1− e−piT

pi

where we used tn − tn−1 = T. We obtain then the zero-order hold approximation of the exact
equation (47),

yi(tn)−e−piT yi(tn−1)= 1− e−piT
pi

x(tn−1) (48)

and taking z-transforms of both sides, we find,

Yi(z)−e−piTz−1Yi(z)= 1− e−piT
pi

z−1X(z) , or,

Yi(z)= 1− e−piT
pi

z−1

1− e−piTz−1
X(z)

which can be written as an identity in z in the form,

Yi(z)= 1− e−piT
pi

z−1

1− e−piTz−1
X(z)= 1

pi

[
1− 1− z−1

1− e−piTz−1

]
X(z) (49)

Sampling Eq. (46) at t = tn, then taking z-transforms, and using Eq. (49), we find the overall
discrete-time transfer function that incorporates the zero-order hold approximation,

y(tn)= R0x(tn)+
M∑
i=1

Riyi(tn)

Y(z)= R0X(z)+
M∑
i=1

RiYi(z)= R0X(z)+
M∑
i=1

Ri
pi

[
1− 1− z−1

1− e−piTz−1

]
X(z)

Hd(z)= Y(z)
X(z)

= R0 +
M∑
i=1

Ri
pi

[
1− 1− z−1

1− e−piTz−1

]
, or,

Hd(z)=
(
R0 +

M∑
i=1

Ri
pi

)
−

M∑
i=1

Ri
pi

1− z−1

1− e−piTz−1
(50)
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Next, we demonstrate that Eq. (50) is identical to Eq. (42) and that steps 1–3 can be used to obtain
it. To this end, we form, G(s)= Ha(s)/s, and perform its PFE, and follow the progression of steps
shown in Eq. (43),

G(s) = Ha(s)
s

= R0

s
+

M∑
i=1

Ri
s(s+ pi) =

R0

s
+

M∑
i=1

Ri
pi

[
1

s
− 1

s+ pi

]

g(t) = R0u(t)+
M∑
i=1

Ri
pi

[
u(t)−e−pit u(t)]

g(tn) = R0u(tn)+
M∑
i=1

Ri
pi

[
u(tn)−e−piTnu(tn)

]

Gd(z) =
∞∑
n=0

g(tn)z−n = R0

1− z−1
+

M∑
i=1

Ri
pi

[
1

1− z−1
− 1

1− e−piT z−1

]
, or

Gd(z)=
(
R0 +

M∑
i=1

Ri
pi

)
1

1− z−1
−

M∑
i=1

Ri
pi

1

1− e−piTz−1
(51)

Next, by multiplying Gd(z) by the factor (1 − z−1), we obtain the final DT transfer function,
which agrees with (50),

(1− z−1)Gd(z)=
(
R0 +

M∑
i=1

Ri
pi

)
−

M∑
i=1

Ri
pi

1− z−1

1− e−piTz−1
= Hd(z)

Comparing G(s) and Gd(z) we observe that we are effectively making the substitutions of
Eq. (20), in step-3 of the construction procedure,

G(s) = R0

s
+

M∑
i=1

Ri
pi

[
1

s
− 1

s+ pi

]

Gd(z) = R0

1− z−1
+

M∑
i=1

Ri
pi

[
1

1− z−1
− 1

1− e−piT z−1

]

3. First-Order Hold

The first-order hold has a discrete-time transfer function similar to Eq. (42),

Hd(z)= (1− z−1)2

Tz−1
· Z

[
Ha(s)
s2

]
(first-order hold) (52)

It is actually a modified version of the standard first-order hold, called a triangular hold, and
also used by MATLAB’s built-in function c2d. Under the same assumptions of distinct poles as for
the zero-order hold, the exact equations Eq. (43)–(47) are still valid, that is, for t ≥ 0,

Ha(s) = R0 +
M∑
i=1

Ri
s+ pi , Re(pi)> 0

y(t) = R0x(t)+
M∑
i=1

Riyi(t)

(53)

with the partial output yi(t) satisfying,

yi(tn)−e−piT yi(tn−1)= e−pitn
∫ tn
tn−1

epit
′
x(t′)dt′ (54)
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where in the zero-order hold case, x(t′) was approximated by x(tn−1) within the interval, [tn−1, tn].
By contrast, the first-order hold approximation replaces x(t′) by the more accurate approximation
of a straight line connecting the points x(tn−1) and x(tn),

x(t′)≈ x(tn−1)+x(tn)−x(tn−1)
T

(t′ − tn−1) , tn−1 ≤ t′ ≤ tn

The integral (54) can then be done exactly, resulting in the difference equation, and its z-transform,

yi(tn)−e−piT yi(tn−1) = 1

Tp2
i

[(
e−piT + piT − 1

)
x(tn)+

(
1− e−piT − piTe−piT

)
x(tn−1)

]

Yi(z) = 1

Tp2
i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT)z−1

1− e−piTz−1
X(z)

(55)

Thus, the overall output and discrete-time transfer function will be,

Y(z) = R0X(z)+
M∑
i=1

RiYi(z)

= R0X(z)+
M∑
i=1

Ri
Tp2

i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT)z−1

1− e−piTz−1
X(z)

Hd(z) = Y(z)
X(z)

= R0 +
M∑
i=1

Ri
Tp2

i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT)z−1

1− e−piTz−1
, or,

Hd(z)= R0 +
M∑
i=1

Ri
Tp2

i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT)z−1

1− e−piTz−1
(56)

Next, we show the Eq. (56) is identical to (52) under the substitutions of Eq. (20),

1

s+ p1
⇒ 1

1− e−p1Tz−1

1

(s+ p1)2
⇒ Tz−1

(1− e−p1Tz−1)2

and

1

s
⇒ 1

1− z−1

1

s2
⇒ Tz−1

(1− z−1)2

(57)

For the given Ha(s) in Eq. (53), we have,

Ha(s)
s2

= R0

s2
+

M∑
i=1

Ri
s2(s+ pi) =

R0

s2
+

M∑
i=1

Ri
p2
i

[
1

s+ pi −
1

s
+ pi
s2

]

and making the substitutions (57), we find the corresponding z-transform,

Z
[
Ha(s)
s2

]
= R0Tz−1

(1− z−1)2
+

M∑
i=1

Ri
p2
i

[
1

1− e−p1Tz−1
− 1

1− z−1
+ piTz−1

(1− z−1)2

]

Thus, according to Eq. (42), we must have,

Hd(z)= (1− z−1)2

Tz−1
· Z

[
Ha(s)
s2

]
= R0 +

M∑
i=1

Ri
Tp2

i
· z ·

[
(1− z−1)2

1− e−p1Tz−1
− (1− z−1)+piTz−1

]

which is easily shown to be identically equal to Eq. (56).
We note finally that the zero-order hold approximation of a simple integrator is equivalent to

the forward-Euler rule, whereas its first-order hold approximation is equivalent to the trapezoidal
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rule. Indeed, for the zero-order hold, we substitute, Ha(s)= 1/s, for the transfer function of the
integrator,

Hd(z)= (1− z−1)·Z
[
Ha(s)
s

]
= (1− z−1)·Z

[
1

s2

]
= (1− z−1)· Tz−1

(1− z−1)2
= T
z− 1

while for the first-order hold we have (see table of Laplace and Z transforms on Sakai),

Hd(z) = (1− z−1)2

Tz−1
· Z

[
Ha(s)
s2

]
= (1− z−1)2

Tz−1
· Z

[
1

s3

]
= (1− z−1)2

Tz−1
· T

2z−1(1+ z−1)
2(1− z−1)3

= T
2

1+ z−1

1− z−1

4. MATLAB function – c2d2

The difference equation coefficient vectors, b = [b0, b1, b2], and, a = [1, a1, a2], can also be com-
puted with the help of the supplied MATLAB function c2d2 on Sakai > Resources > course functions.
Its inputs are the analog transfer function coefficients, B = [B0, B1, B2], A = [1,A1,A2], the time-
step T, and the discretization method. For instance, in example 4,

B = [2,1,1]; A = [1,4,3]; T = 0.01;

[b,a] = c2d2(B,A,T,’fe’); % forward Euler
[b,a] = c2d2(B,A,T,’be’); % backward Euler
[b,a] = c2d2(B,A,T,’tr’); % trapezoidal (default)
[b,a] = c2d2(B,A,T,’zoh’); % zero-order hold
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