
332:345 – Linear Systems & Signals – Fall 2018

Set 3 – Solved First-Order Examples – S. J. Orfanidis

Overview

Practical LTI systems are described by linear constant-coefficient differential equations (LCCDEs).
For simple type inputs (e.g., unit-steps, ramps, pulses, exponentials, sinusoids) the solution can
be obtained analytically (a) by Laplace transforms using initial conditions at t = 0−, or, (b) by the
classical method using initial conditions at t = 0+, implemented for example using the dsolve
function of MATLAB’s symbolic toolbox.

For more complicated and arbitrary inputs, the LCCDEs can be solved numerically (a) by using,
for example, MATLAB’s built-in lsim function, or, (b) by converting the CT differential equation into
a DT difference equation using some sort of discretization scheme, and then iterating it numerically.

In this set, as well as in sets 4 & 5, we illustrate the above approaches with several first- and
second-order examples.† The first topic to discuss is how to map the initial conditions from t = 0−
to the corresponding ones at t = 0+ and the nature of the solutions in the two cases.

To define our task, consider a second-order LTI system described by a second-order differential
equation of the form given below in Eq. (1), which also can be transformed to the s-domain using
the formal mapping, s↔ d/dt, and define its transfer function as the ratio of the Laplace transform
of the output to the Laplace transform of the input,

ÿ(t)+a1ẏ(t)+a2y(t)= b0ẍ(t)+b1ẋ(t)+b2x(t)

(D2 + a1D+ a2)y(t)= (b0D2 + b1D+ b2)x(t)
(1)

(s2 + a1s+ a2)Y(s)= (b0s2 + b1s+ b2)X(s) ⇒ H(s)= Y(s)
X(s)

= b0s2 + b1s+ b2

s2 + a1s+ a2
(2)

where we used the notation,

D = d
dt
, ḟ(t)= Df(t)= df(t)

dt
Similarly, a first-order LTI system is characterized by the following first-order differential equa-

tion and transfer function,

ẏ(t)+ay(t)= b0ẋ(t)+b1x(t)

(D+ a)y(t)= (b0D+ b1)x(t)
(3)

(s+ a)Y(s)= (b0s+ b1)X(s) ⇒ H(s)= Y(s)
X(s)

= b0s+ b1

s+ a (4)

The differential equation (1) is to be solved for y(t) with a given input x(t) and given initial
conditions, y(0−), ẏ(0−), specified at t = 0−. Alternatively, as is done in the classical method of
solving differential equations, one can specify the initial conditions, y(0+), ẏ(0+), at time t = 0+.
For the first-order case of Eq. (3), the initial condition at t = 0− is the single number y(0−), or
equivalently at t = 0+, the number, y(0+). The mapping between the two sets of conditions is as
follows, up to order 3,

y(0+) = y(0−)+b0x(0+)

ẏ(0+) = ẏ(0−)+b0 ẋ(0+)+(b1 − a1b0)x(0+)

ÿ(0+) = ÿ(0−)+b0 ẍ(0+)+(b1 − a1b0)ẋ(0+)+
(
b2 − a2b0 − a1(b1 − a1b0)

)
x(0+)

(5)

†See also Sect. 3.11 of the SSTA text.

1

These assume that the input signal x(t) is causal and that it does not have any impulsive delta-
function terms, like δ(t), (but it may be discontinuous at t = 0). For first-order systems only the
first equation in (5) is needed, for second-order systems, only the first two are needed, and for
third-order, all three are needed.

The general solution of Eqs. (1) or (3), subject to the given initial conditions can be decomposed
as a sum of two types of terms,

y(t) = yzi(t)︸ ︷︷ ︸
zero-input
IC(0−)�= 0

+ yzs(t)︸ ︷︷ ︸
zero-state
IC(0−)= 0
h(t)∗x(t)

= yhomog(t)︸ ︷︷ ︸
homogeneous

IC(0+)�= 0

+ yf(t)︸ ︷︷ ︸
forced response

easy to guess

(6)

The zero-input/zero-state decomposition uses the initial conditions at t = 0−, and each term
separately, or both simultaneously, can be determined by Laplace transform methods. The relevant
MATLAB functions are, laplace, solve, partfrac, ilaplace. The zero-state term can also be obtained by
convolving the system’s impulse response h(t) with the input signal x(t), that is, by the operation,
yzs(t)= h(t)∗x(t), but that is generally less convenient than the Laplace method.

The homogeneous/forced-response decomposition uses the initial conditions at t = 0+. It is
equivalent to the classical method of solution and can be implemented in MATLAB with the function
dsolve, which requires the conditions at t = 0+. Both decompositions are special cases of the more
general, but not unique, decomposition into a homogeneous part and a particular solution,

y(t)= yhomog(t)︸ ︷︷ ︸
homogeneous

+ypart(t)︸ ︷︷ ︸
particular

(7)

The homogeneous part in Eq. (6) or (7) is expressible as a linear combination of the characteristic
modes of the system, with coefficients fixed by the initial conditions at t = 0+. This approach is
illustrated in various examples below.

Since convolution in the time-domain becomes multiplication in the s-domain, the Laplace trans-
form of the zero-state component will be,

yzs(t)= h(t)∗x(t) � Yzs(s)= H(s)X(s) (8)

Thus, the Laplace transform of the total solution will be as follows, with the part Yzi(s) incor-
porating the initial conditions at t = 0−,

y(t)= yzi(t)+yzs(t) � Y(s)= Yzi(s)+Yzs(s)= Yzi(s)+H(s)X(s) (9)

Eq. (5) also applies separately to the zero-input and zero-state parts. By definition, the zero-input
component, yzi(t), is the solution of Eq. (1) when the input is zero, x(t)= 0. Also by definition, the
zero-state component, yzs(t), is the solution of (1) with the given input x(t), but subject to zero
initial conditions at t = 0−. It follows that the initial conditions of yzi(t) are the same as those of
the total solution y(t), indeed, y(0−)= yzi(0−)+yzs(0−)= yzi(0−)+0 = yzi(0−), and similarly for
the other conditions. Thus, the conditions (5) for yzi(t) will be, after setting x(t)= 0,

yzi(0+) = yzi(0−)= y(0−)
ẏzi(0+) = ẏzi(0−)= ẏ(0−)
ÿzi(0+) = ÿzi(0−)= ÿ(0−)

(10)

We note that there is no distinction between t = 0− and t = 0+, and moreover, the conditions for
yzi(t) match those of the total solution y(t). The yzi(t) component can be determined either by
Laplace or by the dsolve method both using the same initial conditions at t = 0−. For the zero-state
component, Eq. (5) becomes,

2

yzs(0−) = 0

ẏzs(0−) = 0

ÿzs(0−) = 0

⇒
yzs(0+) = b0x(0+)

ẏzs(0+) = b0 ẋ(0+)+(b1 − a1b0)x(0+)

ÿzs(0+) = b0 ẍ(0+)+(b1 − a1b0)ẋ(0+)+
(
b2 − a2b0 − a1(b1 − a1b0)

)
x(0+)

(11)
It follows that the component yzs(t) can be determined by three methods: (i) convolution, (ii)

Laplace method applied to the zero initial conditions at t = 0− of Eq. (11), (iii) dsolve method applied
to the t = 0+ conditions of Eq. (11).

First-Order Example

Next, we demonstrate all of the above properties with our first-order example characterized by,

ẏ(t)+ay(t)= b0 ẋ(t)+b1x(t) with H(s)= b0s+ b1

s+ a (12)

where a,b0, b1 are given constants, with a > 0. This is similar to the audio equalizer example that
had, b0 = 1, b1 = Ga. The required initial condition at t = 0− is the single number y(0−), or
equivalently at t = 0+ the number, y(0+)= y(0−)+b0x(0+), per Eq. (5).

We begin by solving Eq. (12) for arbitrary causal x(t), and from that solution we will be able to
derive the decompositions in Eq. (6). Using the variation of parameters technique, we consider the
following time derivative, and use Eq. (12),

d
dt

(
eat
[
y(t)−b0x(t)

]) = eat[ẏ(t)−b0ẋ(t)+ay(t)︸ ︷︷ ︸
b1x(t)

−b0ax(t)
] = (b1 − ab0)eatx(t)

Integrating over the time interval [0−, t], with t ≥ 0−, we pick up a constant of integration, say C,

eat
[
y(t)−b0x(t)

] = C+ (b1 − ab0)
∫ t

0−
eat

′
x(t′)dt′

and solving for y(t),

y(t)= Ce−at + b0x(t)+(b1 − ab0)e−at
∫ t

0−
eat

′
x(t′)dt′ (13)

Setting t = 0−, we obtain y(0−)= C, since x(t) was assumed to be causal implying that, x(0−)=
0. Similarly, since we also assume that x(t) has no delta-function terms, we find after setting t = 0+

y(0+)= C+ b0x(0+)= y(0−)+b0x(0+)

which proves Eq. (5) in this first-order case. Thus, we obtain finally, for t ≥ 0−,

y(t)= y(0−)e−at + b0x(t)+(b1 − ab0)e−at
∫ t

0−
eat

′
x(t′)dt′ (14)

Setting x(t)= 0, we get the zero-input solution, yzi(t)= y(0−)e−at, which is a solution of the
homogeneous equation, ẏ(t)+ay(t)= 0. Setting y(0−)= 0, we see that the x-dependent terms in
(14) comprise the zero-state (i.e., with zero initial conditions at t = 0−) solution. Thus, we have,

y(t)= y(0−)e−at︸ ︷︷ ︸
zero-input

+b0x(t)+(b1 − ab0)e−at
∫ t

0−
eat

′
x(t′)dt′︸ ︷︷ ︸

zero-state

(15)

3

Let us verify that the zero-state part is also given by convolution, yzs(t)= h(t)∗x(t). Since h(t)
and H(s) are by definition Laplace transform pairs, we find by inverting H(s),

H(s)= b0s+ b1

s+ a = b0 + b1 − ab0

s+ a � h(t)= b0δ(t)+(b1 − ab0)e−atu(t) (16)

From the definition of the convolution operation, we have for t ≥ 0,

(h∗ x)(t) =
∫ t

0−
h(t − t′)x(t′)dt′ =

∫ t
0−

[
b0δ(t − t′)+(b1 − ab0)e−a(t−t

′)u(t − t′)]x(t′)dt′
= b0

∫ t
0−
δ(t − t′)x(t′)dt′ + (b1 − ab0)

∫ t
0−
e−a(t−t

′)x(t′)dt′

= b0x(t)+(b1 − ab0)e−at
∫ t

0−
eat

′
x(t′)dt′︸ ︷︷ ︸

zero-state part

= yzs(t)

The impulse response h(t) of Eq. (16) can also be derived directly in the time domain by sending
in the input, x(t)= δ(t), and solving Eq. (12) subject to zero initial conditions at t = 0−. Indeed, the
solution in Eq. (14) remains valid for the delta-function input, thus, denoting the output y(t)= h(t),
and setting h(0−)= 0, and using the sifting property of delta functions, we have for t ≥ 0−,

h(t)= b0δ(t)+(b1 − ab0)e−at
∫ t

0−
eat

′
δ(t′)dt′ = b0δ(t)+(b1 − ab0)e−atu(t)

Special Inputs

Next, we apply the above solution to the following special inputs:

1. x(t)= eptu(t) , exponential, p �= −a
2. x(t)= ejω0tu(t) , sinusoidal, p = jω0

3. x(t)= u(t) , unit-step, p = 0

4. x(t)= e−atu(t) , exponential, p = −a
5. x(t)= tu(t) , unit-ramp

Case 2 is the most important in linear systems since it describes what happens to sinusoidal
inputs upon passing through the system. An arbitrary input can be resolved into sinusoidal compo-
nents by Fourier transformation, therefore, this case will tell us how each such component passes
through the system.

The unit-step and unit-ramp cases are also important, especially, in feedback control systems
designed to force a linear dynamic system to reach a certain pre-specified output. Case 4 is more
specialized and corresponds to a double-pole in the output.

Below we solve these cases analytically by performing the integration in Eq. (14), and also using
Laplace s-domain methods, as well as the dsolve method. To begin with we can carry out the impulse
response calculation in (16) symbolically using the following MATLAB code,

syms a b0 b1 s

H = (b0*s+b1)/(s+a);
H = partfrac(H) % H(s) = b0 + (b1 - a*b0)/(a + s)
h = ilaplace(H) % h(t) = b0*dirac(t) + exp(-a*t)*(b1 - a*b0)

Case 1

x(t)= eptu(t). The integration in the last term of Eq. (14) gives,

e−at
∫ t

0−
eat

′
x(t′)dt′ = e−at

∫ t
0−
eat

′
ept

′
dt′ = e−at · e

(p+a)t − 1

p+ a = e
pt − e−at
p+ a

4

Inserting this into Eq. (14), we find for t ≥ 0+,

y(t) = y(0−)e−at + b0x(t)+(b1 − ab0)e−at
∫ t

0−
eat

′
x(t′)dt′

= y(0−)e−at︸ ︷︷ ︸
zero-input

+b0ept + (b1 − ab0)
ept − e−at
p+ a︸ ︷︷ ︸

zero-state

(17)

Setting t = 0+, we obtain, y(0+)= y(0−)+b0, since x(0+)= 1. The terms can also be arranged
into the homogeneous/forced decomposition by separating the term e−at, which becomes the ho-
mogeneous response, and the term ept, which becomes the forced response,

y(t) =
[
y(0−)−b1 − ab0

p+ a
]
e−at +

[
b0 + b1 − ab0

p+ a
]
ept

= [y(0+)−H(p)]e−at︸ ︷︷ ︸
homogeneous

+H(p)ept︸ ︷︷ ︸
forced

(18)

where we recognize that the overall coefficient of the forced response is the transfer functionH(s)
evaluated at s = p, that is,

H(p)= H(s)
∣∣∣∣
s=p
= b0 + b1 − ab0

s+ a
∣∣∣∣
s=p
= b0 + b1 − ab0

p+ a = b0p+ b1

p+ a
and we made the replacement, y(0−)= y(0+)−b0, in the first term.

It can be shown more generally for a higher-order LCCDE system that the forced response due
to an exponential input, eptu(t), such that p does not coincide with one of the system poles, has
the form, H(p)eptu(t).

Case 2

x(t)= ejω0tu(t). Making the replacement p = jω0 in case 1, we find now,

y(t) =
[
y(0−)−b1 − ab0

a+ jω0

]
e−at +

[
b0 + b1 − ab0

a+ jω0

]
ejω0t

= [y(0+)−H(ω0)
]
e−at︸ ︷︷ ︸

homogeneous
transients

+H(ω0)ejω0t︸ ︷︷ ︸
forced

steady-state

(19)

The overall coefficient of the forced response is the transfer functionH(s) evaluated at s = jω0,
that is, the frequency response,†

H(ω0)= H(s)
∣∣∣∣
s=jω0

= b0 + b1 − ab0

a+ jω0
= b0 jω0 + b1

jω0 + a
The first term in Eq. (19) represents the transient response, which disappears as t → ∞, with a

time constant, τ = 1/a. The second term is the steady-state sinusoidal response and persists at the
output,

ysteady(t)= H(ω0)ejω0t (steady-state sinusoidal response) (20)

This is the steady output due to the double-sided complex sinusoidal input x(t)= ejω0t. To find
the output for a real-valued double-sided sinusoidal input, we introduce the polar representation of
the frequency response,

H(ω0)= |H(ω0)|ejθ(ω0) ⇒ |H(ω0)| , magnitude response

θ(ω0) , phase response
(21)

†We use the notation of the SSTA textbook for the frequency response, i.e., denoted by H(ω) instead of H(jω).

5

Since the transfer function coefficients a,b0, b1 are assumed real, it follows that, H(−jω0)=
H(ω0)∗, i.e., the complex conjugate. The response to a real-valued sinusoid, x(t)= cos(ω0t), can
be worked out then as follows:

x(t) = cos(ω0t)= 1

2

[
ejω0t + e−jω0t

] ⇒ ysteady(t)= 1

2

[
H(ω0)ejω0t +H(−jω0)e−jω0t

]
or, taking real-parts,

x(t)= cos(ω0t)= Re
[
ejω0t

] ⇒ ysteady(t)= Re
[
H(ω0)ejω0t

] = |H(ω0)| cos
(
ω0t + θ(ω0)

)
and similarly for sin(ω0t). To summarize, for arbitrary ω, we have in the steady-state,

ejωt H−→ H(ω)ejωt

cos(ωt) H−→ |H(ω)| cos
(
ωt + θ(ω))

sin(ωt) H−→ |H(ω)| sin
(
ωt + θ(ω))

(steady-state sinusoidal response) (22)

This property is quite general and is valid for any higher-order stable filter with real-valued coeffi-
cients.

Case 3

x(t)= u(t). We may set p = 0 in the above, or, do the required integral in Eq. (14) directly,

e−at
∫ t

0−
eat

′
dt′ = e−at · e

at − 1

a
= 1− e−at

a

which leads to, for t ≥ 0,

y(t) = y(0−)e−at︸ ︷︷ ︸
zero-input

+b0 + (b1 − ab0)
1− e−at
a︸ ︷︷ ︸

zero-state

=
[
y(0−)−b1 − ab0

a

]
e−at +

[
b0 + b1 − ab0

a

]
u(t)

=
[
y(0+)−b1

a

]
e−at︸ ︷︷ ︸

homogeneous

+ b1

a
u(t)︸ ︷︷ ︸

forced

= [y(0+)−H(0)]e−at︸ ︷︷ ︸
homogeneous

+H(0)u(t)︸ ︷︷ ︸
forced

(23)

where H(0) is the frequency response at DC,

H(0)= H(s)
∣∣∣∣
s=0
= b0s+ b1

s+ a
∣∣∣∣
s=0
= b1

a

Case 4

x(t)= e−atu(t). The integration in Eq. (14) now gives,

e−at
∫ t

0−
eat

′
e−at

′
dt′ = e−at

∫ t
0−
dt′ = te−at

and the complete solution becomes,

y(t) = y(0−)e−at︸ ︷︷ ︸
zero-input

+b0e−at + (b1 − ab0)te−at︸ ︷︷ ︸
zero-state

= [y(0−)+b0
]
e−at + (b1 − ab0)te−at = y(0+)e−at︸ ︷︷ ︸

homogeneous

+ (b1 − ab0)te−at︸ ︷︷ ︸
forced

(24)

6

In the single-pole case the forced term was,H(p)eptu(t). The analogous result for a double-pole
is that the forced response has the form,

Rte−atu(t) , R = lim
s=−a

[
(s+ a)H(s)]

Indeed, here we have in our 1st order example,

R = lim
s=−a

[
(s+ a)H(s)] = [(s+ a)·b0s+ b1

s+ a
]
s=−a

= b1 − ab0

Case 5

x(t)= tu(t). The integral is a bit more complicated,

e−at
∫ t

0−
eat

′
t′dt′ = at − 1+ e−at

a2

and the complete solution becomes,

y(t) = y(0−)e−at︸ ︷︷ ︸
zero-input

+b0t + (b1 − ab0)
at − 1+ e−at

a2︸ ︷︷ ︸
zero-state

=
[
y(0−)+b1 − ab0

a2

]
e−at︸ ︷︷ ︸

homogeneous

+
[
b1

a
t − b1 − ab0

a2

]
︸ ︷︷ ︸

forced

(25)

where we note that since here, x(0+)= 0, it follows from Eq. (5) that, y(0+)= y(0−). It is worth also
deriving the same result using the classical method. Since the input is linear in t and the differential
equation is first order, we look for a forced solution of the form, yf(t)= β1 t+β2, with coefficients
to be determined. Requiring that yf(t) be solution of Eq. (12) with x(t)= t, fixes the coefficients by
equating like powers of t,

ẏf (t)+ayf(t)= b0 ẋ(t)+b1x(t) ⇒ β1 + a(β1 t + β2)= b0 + b1 t ⇒
⎧⎨
⎩aβ1 = b1

β1 + aβ2 = b0

which gives,

β1 = b1

a
, β2 = b0 − β1

a
= −b1 − ab0

a2
⇒ yf(t)= β1 t + β2 =

[
b1

a
t − b1 − ab0

a2

]

The overall solution is obtained by adding the general solution of the homogeneous equation,
that is, ce−at, and fixing c from the initial condition y(0+) which is the same as y(0−),

y(t)= ce−at + β1 t + β2

so that, c+ β2 = y(0−), or, c = y(0−)−β2, and the resulting y(t) is identical to that of Eq. (25),

y(t)= [y(0−)−β2
]
e−at + [β1 t + β2

]

Laplace and dsolve methods

The computations so far were based on carrying out the integral in Eq. (14) explicitly for each special
input. An alternative approach is to work with Laplace transforms. We recall from Principles II, or
from SSTA Ch 3, that if you have initial conditions y(0−) and ẏ(0−), then the Laplace transforms
of the first and second time derivatives are,

7

y(t) L−→ Y(s)

ẏ(t) L−→ sY(s)−y(0−)

ÿ(t) L−→ s2Y(s)−sy(0−)−ẏ(0−)

(26)

The same are also valid for the input x(t), however, in this case we have, x(0−)= ẋ(0−)= 0,
because we always assume a causal input. Before we choose a particular input, the Laplace transform
of the differential equation (3) subject to the condition y(0−) will be,

ẏ(t)+ay(t)= b0ẋ(t)+b1x(t) ⇒
sY(s)−y(0−)+aY(s)= b0sX(s)+b1X(s) ⇒
(s+ a)Y(s)−y(0−)= (b0s+ b1)X(s)

(27)

where we applied Eq. (26). Solving Eq. (27) algebraically for Y(s) gives,

Y(s)= y(0
−)

s+ a +
(
b0s+ b1

s+ a
)

︸ ︷︷ ︸
H(s)

X(s)= y(0−)
s+ a︸ ︷︷ ︸

zero-input

+H(s)X(s)︸ ︷︷ ︸
zero-state

(28)

Inverting the Laplace transforms, and noting that the inverse of H(s)X(s) is the convolution,
h(t)∗x(t), which we have already shown is equal to the zero-state response yzs(t), we obtain the
same solution as in Eq. (14), that is, for t ≥ 0,

y(t) = y(0−)e−at︸ ︷︷ ︸
zero-input

+
∫ t

0−
h(t − t′)x(t′)dt′︸ ︷︷ ︸

zero-state

=

= y(0−)e−at︸ ︷︷ ︸
zero-input

+b0x(t)+(b1 − ab0)e−at
∫ t

0−
eat

′
x(t′)dt′︸ ︷︷ ︸

zero-state

(29)

Let us illustrate the method for case-1 with input, x(t)= e−btu(t), corresponding to the choice
p = −b, with b > 0, but b �= a. The Laplace transform of x(t) is, X(s)= 1/(s+ b). It follows from
Eq. (28) after carrying out a partial-fraction expansion that,

Y(s) = y(0
−)

s+ a +
(
b0s+ b1

s+ a
)
X(s)= y(0−)

s+ a︸ ︷︷ ︸
zero-input

+ b0s+ b1

(s+ a)(s+ b)︸ ︷︷ ︸
zero-state

=

= y(0
−)

s+ a +
(b1 − ab0)/(b− a)

s+ a + (b1 − bb0)/(a− b)
s+ b =

= y(0
−)

s+ a +
b0 −H(−b)

s+ a + H(−b)
s+ b

= y(0
−)+b0 −H(−b)

s+ a + H(−b)
s+ b = y(0

+)−H(−b)
s+ a︸ ︷︷ ︸

homogeneous

+ H(−b)
s+ b︸ ︷︷ ︸
forced

Its inverse transform gives the same result as Eq. (18), for t ≥ 0,

y(t)= [y(0+)−H(−b)]e−at︸ ︷︷ ︸
homogeneous

+H(−b)e−bt︸ ︷︷ ︸
forced

(30)

8

The above steps of (i) solving for Y(s), (ii) performing its partial fraction expansion (PFE), and
(iii) inverting Y(s) to obtain the time domain signal y(t), can be carried out very quickly with the
symbolic toolbox.† Alternatively, one can use the dsolve function to solve the differential equa-
tion symbolically using the t = 0+ initial condition, y(0+)= y(0−)+b0x(0+). The following code
illustrates both approaches and verifies that they produce the same answer,

syms a b0 b1 b w0 t s y0 Y % y0 represents y(0-), w0 is used later

x = exp(-b*t); % input signal
X = laplace(x); % here, X(s) = 1/(s+b)

Y1 = solve(s*Y-y0 + a*Y == b0*s*X + b1*X, Y) % obtain y(t) by Laplace method
Y1 = partfrac(Y1,s) % PFE of Y(s) with respect to s
y1 = ilaplace(Y1) % y(t), same as Eq.(30)

syms t y(t) % obtain y(t) by dsolve method
dy = diff(y,t); dx = diff(x,t); % dy,dx are shorthand notation
x0 = subs(x,t,0); % x(0+)=1, needed for dsolve
y2 = dsolve(dy + a*y == b0*dx + b1*x, y(0) == y0 + b0*x0); % here, y(0) is y(0+)

simplify(y1-y2) % verify, ans=0

% note, y2 = exp(-a*t)*(b0 + y0 - (b1 - b*b0)/(a - b)) + (exp(-b*t)*(b1 - b*b0))/(a - b)

We can also approach the problem by first finding the zero-input solution yzi(t), then, the zero-
state solution yzs(t), and adding them up, y(t)= yzi(t)+yzs(t). The following MATLAB code shows
how to determine yzi(t) in two ways, using Laplace transforms and using the dsolve function,

syms a b0 b1 b w0 t s y0 Y

Yzi1 = solve(s*Y - y0 + a*Y == 0, Y); % yzi(t) by Laplace method
yzi1 = ilaplace(Yzi1); % x(t) = 0 in this case, yzi1 = y0*exp(-a*t)

syms t y(t) % yzi(t) by dsolve method
dy = diff(y,t);
yiz2 = dsolve(dy + a*y == 0, y(0) == y0); % here, y(0) = yzi(0-) = y(0-)

simplify(yzi1-yiz2) % verify, ans=0

Note that we set X(s)= 0 in the right-hand side of Eq. (27), i.e., zero-input, and also we used
y(0−) in the dsolve method because of Eq. (10).

Similarly, we can obtain the zero-state solution, yzs(t), in two ways, Laplace and dsolve, but now
we will use initial conditions as in Eq. (11),

syms a b0 b1 b w0 t s Y

x = exp(-b*t);
x0 = subs(x,t,0);
X = laplace(x);

Yzs1 = solve(s*Y + a*Y == b0*s*X + b1*X, Y); % yzs(t) by Laplace method
yzs1= ilaplace(Yzs1); % here, y(0-) = 0

syms t y(t) % yzs(t) by dsolve method
dy = diff(y,t); dx = diff(x,t);
yzs2 = dsolve(dy + a*y == b0*dx + b1*x, y(0) == b0*x0); % here, y(0) = b0*x(0+)

simplify(yzs1-yzs2) % verify, ans=0

% note, yzs2 = (exp(-b*t)*(b1 - b*b0))/(a - b) - (exp(-a*t)*(b1 - a*b0))/(a - b)

The same code segments apply to all other cases. We only need to change the definition of x(t),
†In exams, however, you will have to carry out these steps by hand.

9

x = exp(j*w0*t); % sinusoid
x = sym(1); % unit-step
x = t; % unit-ramp
x = exp(-a*t); % double pole

As a concrete example of the above, consider the following first-order system to be solved with
initial condition, y(0−)= 5,

ẏ(t)+y(t)= 2 ẋ(t)+3x(t)

Its transfer function and impulse response are,

H(s)= 2s+ 3

s+ 1
= 2+ 1

s+ 1
⇒ h(t)= 2δ(t)+e−tu(t)

Using the previous results and code, we determine the outputs due to several special inputs,
including the zero-state outputs. In all cases, the zero-input solution is, yzi(t)= 5e−tu(t). The
outputs are listed below for t ≥ 0,†

x(t) y(0+) yzs(t) y(t)

e−2tu(t) 7 e−t + e−2t 6e−t + e−2t

u(t) 7 3− e−t 3+ 4e−t

tu(t) 5 3t − 1+ e−t 3t − 1+ 6e−t

e−tu(t) 7 (t + 2)e−t (t + 7)e−t

5e2jt u(t) 15 −(1− 2j)e−t + (11− 2j)e2jt (4+ 2j)e−t + (11− 2j)e2jt

5 cos(2t)u(t) 15 −e−t + 11 cos 2t + 2 sin 2t 4e−t + 11 cos 2t + 2 sin 2t

5 sin(2t)u(t) 5 2e−t + 11 sin 2t − 2 cos 2t 7e−t + 11 sin 2t − 2 cos 2t

As a second example (see SSTA Sect. 3.11.1–3.11.3), consider the following first-order system,

ẏ(t)+3y(t)= 3x(t) ⇒ H(s)= 3

s+ 3
(31)

and determine the output y(t), subject to the initial condition y(0−)= 2, for the following two
inputs, expressing the answer both in its zero-input/zero-state form and in its homogeneous/forced-
response form,

x(t) = 6
(
1− e−2t)u(t)

x(t) = 3
(
1− cos 4t

)
u(t)

Since the Laplace approach was presented in the SSTA text, we concentrate here on the time
domain method. The integrals in Eq. (14) can be done in closed form, however, the classical method
is faster. Since there is no ẋ term in Eq. (31), the b0 coefficient will be zero, b0 = 0, and the initial
condition at t = 0+ will be the same as that at t = 0−, that is, y(0+)= y(0−)= 2.

For the first input, we may write, x(t)= 6u(t)−6e−2tu(t) and apply linearity. The forced re-
sponses of the two terms will be, for t ≥ 0

yf(t)= 6H(0)−6H(−2)e−2t

where we have H(0)= 1 and H(−2)= 3/(−2 + 3)= 3. Thus, yf(t)= 6 − 18e−2t. To that, we add
the general solution of the homogeneous equation, i.e., ce−3t, and fix the coefficient c by the initial
conditions,

y(t)= ce−3t + yf(t)= ce−3t + 6− 18e−2t

and setting t = 0+,
y(0+)= c+ 6− 18 = 2 ⇒ c = 14

†It would be extremely beneficial if you worked all these out by hand.

10

Finally, the complete solution will be,

y(t)= 14e−3t︸ ︷︷ ︸
homogeneous

+ 6− 18e−2t︸ ︷︷ ︸
forced response

= 2e−3t︸ ︷︷ ︸
zero-input

+12e−3t + 6− 18e−2t︸ ︷︷ ︸
zero-state

For the second input, we can apply linearity again by writing, x(t)= 3u(t)−3 cos(4t)u(t). Since
the steady output of a real-valued sinusoid cos(ω0t) is Re

[
H(ω0)ejω0t

]
, it follows that the forced

response in this case will have the form,

yf(t)= 3H(0)−3 Re
[
H(4)e4jt]

where the frequency response at ω = 0 and ω = 4 is,

H(ω)= H(s)∣∣s=jω = 3

3+ jω ⇒ H(0)= 1 , H(4)= 3

3+ 4j
= 0.36− 0.48j = 0.6∠−53.13o

It follows that,

yf(t) = 3− 3 Re
[
(0.36− 0.48j) e4jt] = 3− Re

[
(1.08− 1.44j) e4jt]

= 3− 1.08 cos 4t − 1.44 sin 4t = 3− 1.8 cos(4t − 53.13o)

To that, we add a general homogeneous term and fix its coefficient by the initial conditions,

y(t)= ce−3t + 3− 1.08 cos 4t − 1.44 sin 4t

so that, y(0+)= c+ 3− 10.08 = 2, or, c = 0.08, resulting in,

y(t)= 0.08e−3t︸ ︷︷ ︸
homogeneous

+3− 1.08 cos 4t − 1.44 sin 4t︸ ︷︷ ︸
forced response

= 2e−3t︸ ︷︷ ︸
zero-input

+3− 1.08 cos 4t − 1.44 sin 4t − 1.92e−3t︸ ︷︷ ︸
zero-state

For both inputs, the zero-state parts of the answers can also be derived quickly in closed form
using the int function of the symbolic toolbox to calculate the convolution integrals, h(t)∗x(t).
Additional solved first-order examples can be found in the set-2 handout available on Sakai.

State-Space Realization

We will be discussing state-space realizations in greater detail later on. However, for our simple
first-order model, it is a trivial matter to convert its differential equation (3) and its solution (14)
into state-space form and derive from it a block-diagram realization.

We will assume that the coefficients a,b0, b1 of the differential equation (3) are such that, b1 �=
ab0. Otherwise, the system becomes a trivial gain factor, indeed, setting b1 = ab0 inH(s), we have,

H(s)= b0s+ b1

s+ a = b0s+ b0a
s+ a = b0(s+ a)

s+ a = b0

Thus, to avoid this trivial case, we will assume that b1 �= ab0. The solution given in (14) can then
be rearranged as,

y(t) = y(0−)e−at + b0x(t)+(b1 − ab0)e−at
∫ t

0−
eat

′
x(t′)dt′

= (b1 − ab0)
[
y(0−)
b1 − ab0

e−at + e−at
∫ t

0−
eat

′
x(t′)dt′

]
+ b0x(t)

Let us define the “state” v(t) and its initial value v0 by,

v(t)= v0e−at + e−at
∫ t

0−
eat

′
x(t′)dt′ , v0 = y(0−)

b1 − ab0
(32)

11

Then, y(t) can be expressed as a linear combination of v(t) and x(t),

y(t)= (b1 − ab0)v(t)+b0x(t) (33)

On the other hand, by differentiating Eq. (32), we can easily verify that v(t) satisfies the equation,

v̇(t) = d
dt

[
v0e−at + e−at

∫ t
0−
eat

′
x(t′)dt′

]
= d
dt

[
e−at

(
v0 +

∫ t
0−
eat

′
x(t′)dt′

)]

= −ae−at
(
v0 +

∫ t
0−
eat

′
x(t′)dt′

)
+ e−at · eat x(t)= −av(t)+x(t) , or,

v̇(t)= −av(t)+x(t) (34)

Because x(t) contains no delta singularities at t = 0, it follows that the initial conditions for v(t)
are the same at t = 0− and t = 0+, as can be concluded by applying Eq. (5) to this case,

v(0+)= v(0−)= v0 = y(0−)
b1 − ab0

(35)

Thus, the original differential equation can be replaced by the system of the two equations (33)
and (34), subject to the initial condition (35). Such system is an example of a state-space model of a
differential equation that uses the auxiliary variable v(t), called the “state.” The equation for y(t)
can also be written in the following form, in terms of v̇(t),

y(t)= (b1 − ab0)v(t)+b0x(t)= b0
[−av(t)+x(t)]+ b1v(t)= b0 v̇(t)+b1v(t)

Thus, the resulting system of equations can be written in the equivalent forms,

v̇(t) = −av(t)+x(t)
y(t) = b0 v̇(t)+b1v(t)

= (b1 − ab0)v(t)+b0x(t)

(36)

These lead directly to a block-diagram realization of the system in terms of multipliers by the
coefficients, two adders, and an integrator symbolized by 1/s, as shown in the diagram below.

v̇(t) = −av(t)+x(t)
y(t) = b0 v̇(t)+b1v(t)

The signal that runs between the two adders is the derivative, v̇(t), which is also branched
downwards through the integrator and gets integrated, becoming v(t). The left adder implements
the operation, v̇(t)= −av(t)+x(t), and the right adder, the operation, y(t)= b0 v̇(t)+b1v(t).

We will see later that this block diagram realization is the so-called “controller canonical form.”
There several other types of realizations, such as transposed forms, all corresponding to a particular
choice of organizing the computations from the input x(t) to the output y(t).

As an example, consider the first-order system described by the following differential equation
and transfer function, with an initial value y(0−)= −4,

ẏ(t)+y(t)= 3 ẋ(t)+x(t) ⇒ H(s)= 3s+ 1

s+ 1
(37)

12

so that the parameter values are, a = 1, b0 = 3, b1 = 1, which imply the scale factor, (b1 − ab0)=
1 − 3 = −2. Thus, according to Eq. (35), the initial value y(0−) will be mapped to the initial state,
v0 = y(0−)/(b1 − ab0)= −4/(−2)= 2. From Eq. (36), the equivalent state-space system is,

v̇(t) = −v(t)+x(t)
y(t) = −2v(t)+3x(t)

(38)

For the particular input, x(t)= e−2tu(t), the solutions of Eqs. (37) and (38), subject to the given
initial condition, y(0−)= −4, as well as the zero-state solution, are found to be, for t ≥ 0,

y(t) = 5e−2t − 6e−t

v(t) = 3e−t − e−2t

yzs(t) = 5e−2t − 2e−t

(39)

and we may verify,

y(t)= −2v(t)+3x(t)= −2
[
3e−t − e−2t]+ 3e−2t = 5e−2t − 6e−t

The solutions can be obtained simply using the symbolic toolbox,

syms s t Y V

H = (3*s+1)/(s+1); % class(H) is sym
x = exp(-2*t); % input signal
X = laplace(x); % X(s) = 1/(s+2)

a = 1; b0 = 3; b1 = 1;
y0 = -4; v0 = y0/(b1-a*b0); % initial conditions, y(0-) and v(0)

Y = solve(s*Y-y0 + Y == 3*s*X + X, Y);
Y = partfrac(Y,s) % Y(s) = 5/(s + 2) - 6/(s + 1)
y = ilaplace(Y) % y(t) = 5*exp(-2*t) - 6*exp(-t)

yzs = ilaplace(H*X) % zero-state component = 5*exp(-2*t) - 2*exp(-t)

V = solve(s*V-v0 + V == X, V);
V = partfrac(V) % V(s) = 3/(s + 1) - 1/(s + 2)
v = ilaplace(V) % v(t) = 3*exp(-t) - exp(-2*t) = state

simplify(y + 2*v - 3*x); % verify, y = -2*v + 3*x, ans=0

t1 = linspace(0,5,201); % range of t’s
y1 = subs(y,t,t1); % evaluate y(t) at t1
v1 = subs(v,t,t1);
yzs1 = subs(yzs,t,t1);

figure; plot(t1,y1,’b-’, t1,v1,’r--’, t1,yzs1,’k:’); % plot exact expressions

The differential equation (37) and its state-space model (38) can be solved numerically with the
help of the lsim function. The following MATLAB code illustrates the computation. The computed
signals y(t), v(t), yzs(t) are plotted on the right graph below, whereas the exact expressions (39)
are plotted on a separate graph on the left because they are virtually indistinguishable from the
computed ones.

clear
t = linspace(0,5,201)’; % range of t’s
x = exp(-2*t); % input signal

num = [3,1]; den = [1,1]; % numerator and denominator coeffs of H(s)
H = tf(num,den); % class(H) is tf, can be passed to lsim for yzs
[a,b,c,d] = tf2ss(num,den); % convert to state-space form

13

S = ss(a,b,c,d); % class(S) is ss, and can be passed to lsim

% S = ss(tf(num,den)) % also produces a state-space model,

s = tf(’s’); % class(s) is tf
Hv = 1/(s+1); % class(Hv) is tf

% transfer function of the state equation
% convert Hv to state-space form

Sv = ss(Hv); % class(Sv) is ss, and can be passed to lsim

a = 1; b0 = 3; b1 = 1;
y0 = -4; v0 = y0/(b1-a*b0); % initial conditions, y(0-) and v(0)

y = lsim(S,x,t,v0); % full solution, must use v0 as initial state, not y(0-)
% and S must be passed as state-space class, i.e., ss

yzs = lsim(S,x,t); % zero-state part, computed by default if v0 is omitted
v = lsim(Sv,x,t,v0); % state v(t), again Sv must be passed as class ss

norm(-2*v+3*x - y) % verify that y = -2*v + 3*x;

figure; plot(t,y,’b-’, t,v,’r--’, t,yzs,’k:’); % plot lsim outputs

0 1 2 3 4 5
−2

−1

0

1

2

3

t

exact outputs, y(t), v(t), y
zs

(t)

 y(t)
 v(t)
 y

zs
(t)

0 1 2 3 4 5
−2

−1

0

1

2

3

t

lsim outputs, y(t), v(t), y
zs

(t)

 y(t)
 v(t)
 y

zs
(t)

Discretization Schemes for First-Order Systems

Here we discuss briefly how to convert the differential equation for a first-order LTI system into
a difference equation for digital implementation. The details will be presented in class at a later
date. See also the set-4 and set-5 handouts posted under Sakai > Resources >course materials, that
discuss second-order systems including their discretized versions.

For a first-order system, we consider the following differential equation and analog transfer
function with given coefficients {a,B0, B1} and input x(t),

ẏ(t)+ay(t)= B0 ẋ(t)+B1x(t) ⇒ H(s)= B0s+ B1

s+ a (40)

where we use upper-case coefficients, B0, B1, to distinguish them from those of the difference equa-
tion. All discretization schemes convert the differential equation into a difference equation, i.e.,

yn + a1yn−1 = b0xn + b1xn−1 (41)

where yn ≈ y(nT) represents a numerical approximation to the true value of the output y(t) at the
discrete time, tn = nT, n = 0,1,2, . . . , where T is small discretization time step, and xn = x(nT)
is the input signal sampled at time t = nT. The coefficients {a1, b0, b1} depend on the value of T
and the chosen discretization scheme. The difference equation is iterated by writing it recursively,

14

for n = 0,1,2, . . . ,

yn = −a1yn−1 + b0xn + b1xn−1

(42)

where the starting value y−1 may be chosen to be the same as the given initial value y(0−) of the
differential equation, that is,

y−1 ≈ y(0−) (43)

The input x(t) will be assumed to be causal so that, x−1 = 0. The implementation of the differ-
ence equation on a sample-by-sample basis, i.e., without using arrays to hold the input and output
signals, but rather computing each output sample yn as each input sample xn becomes available,
can be formulated with the help of the delayed signals wn, vn, defined by,

wn = yn−1

vn = xn−1

which are updated to time n+ 1 as follows,

wn+1 = yn
vn+1 = xn

Thus, the difference equation can be written as the system,

yn = −a1wn + b0xn + b1vn

wn+1 = yn
vn+1 = xn

(44)

We may now treatw,v as temporary variables (internal states) which are changing from one time
instant to the next, and there is no need to save them as arrays wn, vn. Thus, we can cast Eq. (44) in
the following repetitive form, in which the w,v updates must be done after yn is computed,

initialize: w = y−1 , v = 0

for n = 0,1,2, . . . ,
yn = −a1w+ b0xn + b1v
w = yn (update w)

v = xn (update v)

(45)

Forward-Euler, Backward-Euler, and Trapezoidal Rules

For the forward-Euler, backward-Euler, and trapezoidal/bilinear discretization schemes, the coeffi-
cients {a1, b0, b1} will be derived in class,

b0 = B1p+ B0

ap+ 1
, b1 = B1q− B0

ap+ 1
, a1 = aq− 1

ap+ 1
(46)

where p,q are defined as follows in the three cases, in terms of the discretization time step T,

forward Euler: p = 0 , q = T
backward Euler: p = T , q = 0

trapezoidal/bilinear: p = T/2 , q = T/2
(47)

15

Zero-Order Hold

In this case, we will find that the coefficients {a1, b0, b1} are,

b0 = B0 , b1 = B1

(
1− e−aT

a

)
− B0 , a1 = −e−aT (48)

Consider the previous example that had, a = 1, B0 = 3, B1 = 1, and choose the time step as
T = 0.01. For the zero-order hold, we calculate the difference equation coefficients from Eq. (48),

a1 = −0.99005 , b0 = 3 , b1 = −2.99005

and obtain the difference equation,

yn = 0.99005yn−1 + 3xn − 2.99005xn−1

The graph below plots, y(tn), v(tn), and yzs(tn), computed by iterating Eq. (45) with initial
conditions y(0−)= −4, v(0−)= v0, and y(0−)= 0, respectively. The other discretization schemes
are very similar, resulting in the following difference equation parameter values:

forward Euler: a1 = −0.99000 , b0 = 3 , b1 = −2.99000

backward Euler: a1 = −0.99010 , b0 = 3 , b1 = −2.97030

trapezoidal: a1 = −0.99005 , b0 = 3 , b1 = −2.98010

The discretization parameters for the state v(t) are obtained from Eq. (48) by replacing B0 = 0,
B1 = 1. The graphs are essentially indistinguishable from the previous graphs based on lsim.

0 1 2 3 4 5
−2

−1

0

1

2

3

t
n

discrete−time outputs, y(t
n
), v(t

n
), y

zs
(t

n
)

 y(t

n
)

 v(t
n
)

 y
zs

(t
n
)

The MATLAB code is listed below.

clear
T = 0.01; % discretization time step
a = 1; B0 = 3; B1 = 1; % continuous-time parameters
y0 = -4; v0 = y0/(B1-a*B0); % initial conditions, y(0-), v(0-)

a1 = -exp(-a*T); % discrete-time parameters, ZOH-method
b0 = B0;
b1 = B1*(1-exp(-a*T))/a - B0;

% [a1, b0, b1]

tmax = 5;
tn = 0:T:tmax; % time range, sampled in steps of T
N = length(tn);

x = exp(-2*tn); % sampled input, x(tn)

16

w = y0; v = 0; % initialize w,v
% calculate full solution y(t)

for n=0:N-1,
y(n+1) = -a1*w + b0*x(n+1) + b1*v; % (n+1) is MATLAB index
w = y(n+1);
v = x(n+1);

end

w = 0; v = 0; % initialize w,v
% calculate zero-state solution yzs(t)

for n=0:N-1,
yzs(n+1) = -a1*w + b0*x(n+1) + b1*v; % (n+1) is MATLAB index
w = yzs(n+1);
v = x(n+1);

end

clear v
a1 = -exp(-a*T); % discretization parameters for state v(t)
b1 = (1 - exp(-a*T))/a;
w = v0; u = 0; % initialize w,u (using letter u instead of v)

% calculate state variable v(t), with v(0-)=v0
for n=0:N-1,

v(n+1) = -a1*w + b1*u; % (n+1) is MATLAB index
w = v(n+1);
u = x(n+1);

end

figure; plot(tn,y,’b-’, tn,v,’r--’, tn,yzs,’k:’)

Appendix – Proof of Eq. (5) Using Laplace Transforms

We will prove only the second-order case, the other cases being similar. The initial value theo-
rem of Laplace transforms states that for the Laplace transform pair, y(t)←→ Y(s), and initial
conditions y(0−), ẏ(0−), we have the limits,

y(0+) = lim
s→∞

[
sY(s)

]
ẏ(0+) = lim

s→∞

[
s
[
sY(s)−y(0−)]]

where the second one follows from the first by noting that
[
sY(s)−y(0−)] is the Laplace transform

of ẏ(t). The solution of the differential equation (1) for an arbitrary causal input x(t), subject to
the initial conditions, y(0−), ẏ(0−), can be expressed in the s-domain in the following form, as
discussed in class, with the derivation repeated below,

ÿ(t)+a1ẏ(t)+a2y(t)= b0ẍ(t)+b1ẋ(t)+b2x(t) ⇒[
s2Y(s)−sy(0−)−ẏ(0−)]+ a1

[
sY(s)−y(0−)]+ a2Y(s)= (b0s2 + b1s+ b2)X(s) ⇒

Y(s)= (s+ a1)y(0−)+ẏ(0−)
s2 + a1s+ a2

+
[
b0s2 + b1s+ b2

s2 + a1s+ a2

]
X(s)

= (s+ a1)y(0−)+ẏ(0−)
s2 + a1s+ a2

+
[
b0 + (b1 − a1b0)s+ (b2 − a2b0)

s2 + a1s+ a2

]
X(s)

after a long-division step. Thus,

Y(s)= (s+ a1)y(0−)+ẏ(0−)
s2 + a1s+ a2

+ b0X(s)+
[
(b1 − a1b0)s+ (b2 − a2b0)

s2 + a1s+ a2

]
X(s) (49)

17

multiplying by s, we have,

sY(s)= s(s+ a1)y(0−)+sẏ(0−)
s2 + a1s+ a2

+ b0sX(s)+
[
(b1 − a1b0)s+ (b2 − a2b0)

s2 + a1s+ a2

]
sX(s)

Taking the limit as s→∞, we have,

lim
s→∞

[
sY(s)

] = lim
s→∞

[
s(s+ a1)y(0−)+sẏ(0−)

s2 + a1s+ a2
+ b0sX(s)+

[
(b1 − a1b0)s+ (b2 − a2b0)

s2 + a1s+ a2

]
sX(s)

]

= y(0−)+b0x(0+)

where we assumed that the limit x(0+)= lims→∞
[
sX(s)

]
exists, and for the same reason, we also

dropped the limit of the last term. This verifies the y(0+) part of Eq. (5). For the ẏ(0+) part, it
follows from Eq. (49) that,

s
[
sY(s)−y(0−)] = s2 ẏ(0−)−sa2y(0−)

s2 + a1s+ a2
+ b0s2X(s)+

[
(b1 − a1b0)s2 + (b2 − a2b0)s

s2 + a1s+ a2

][
sX(s)

]

Assuming that the limits, x(0+)= lims→∞
[
sX(s)

]
, and, ẋ(0+)= lims→∞

[
s2X(s)

]
, both exist, it

follows that the limit of the first term will be ẏ(0−), the limit of the second term, b0 ẋ(0+), and the
limit of the third term, (b1 − a1b0)x(0+). Thus, we have,

ẏ(0+)= lim
s→∞

[
s
[
sY(s)−y(0−)]] = ẏ(0−)+b0 ẋ(0+)+(b1 − a1b0)x(0+)

18

