
332:345 – Linear Systems & Signals – Fall 2018

Set 4 – Solved Second-Order Examples – S. J. Orfanidis

Problem 1

Consider the following linear system, driven by the input x(t)= 10e−3tu(t), and subject to
the initial conditions at t = 0−, y(0−)= 0, ẏ(0−)= −5,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) , or, (D2 + 3D+ 2)y(t)= Dx(t) (1)

where D denotes the differential operator D = d/dt.
(a) Determine the transfer function H(s) of this system, and determine analytically (i.e., by

hand) its partial fraction expansion (PFE). Then, determine the PFE again using MATLAB’s
residue function, and alternatively, using the partfrac function of the symbolic toolbox.

(b) Using inverse Laplace transforms, determine analytically the impulse response h(t) of
this system. Then, determine it again using MATLAB’s symbolic toolbox.

(c) Determine h(t) again using the impulse matching method using Eq. (48) of the Appendix.
Then, implement the impulse matching method using the ilaplace function of the sym-
bolic toolbox, and alternatively, using the dsolve function.

(d) Using Laplace transforms, determine analytically the zero-input response subject to the
given initial conditions. Then, determine it again by working exclusively in the time
domain and expressing it as a linear combination of characteristic modes, and fixing
the expansion coefficients from the initial conditions. Finally, determine the solution
again with MATLAB’s symbolic toolbox, using the ilaplace function and, alternatively, the
dsolve function.

(e) For the given input x(t), determine the zero-state response by analytically performing the
convolution operation, y(t)= h(t)∗x(t).

(f) Determine the above zero-state response analytically using Laplace transforms. Then,
determine it again with MATLAB’s symbolic toolbox, using the ilaplace function and,
alternatively, the dsolve function.

(g) For the given input and initial conditions, determine the full solution of Eq. (1) consisting
of the sum of the zero-input and zero-state responses found above. Then, determine it
again analytically using Laplace transforms and carrying out the partial fraction expan-
sions by hand. Then, determine the full solution again using the function ilaplace of the
symbolic toolbox.

(h) Given the above initial conditions, y(0−)= 0, ẏ(0−)= −5, what are the corresponding
initial conditions at t = 0+, that is, y(0+), ẏ(0+)? Using the conditions at t = 0+, re-
derive the full solution of part (g), using the “classical method” described in Section 2.5
of the text. Then, derive it again with the symbolic toolbox and the function dsolve.

(i) Using the built-in function lsim, compute the output y(t) that corresponds to the given
input x(t) and initial conditions, y(0−)= 0, ẏ(0−)= −5, and plot it over the time interval
0 ≤ t ≤ 6. This is a bit tricky since the initial conditions are non-zero.

Solution

(a) Taking Laplace transforms of both sides of Eq. (1) with no initial conditions, we have,

s2Y(s)+3sY(s)+2Y(s)= sX(s) ⇒ H(s)= Y(s)
X(s)

= s
s2 + 3s+ 2
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For the PFE, we have,

H(s)= s
s2 + 3s+ 2

= s
(s+ 2)(s+ 1)

= A
s+ 2

+ B
s+ 1

where

A = s
s+ 1

∣∣∣∣
s=−2

= −2

−2+ 1
= 2 , B = s

s+ 2

∣∣∣∣
s=−1

= −1

−1+ 2
= −1

so that

H(s)= s
s2 + 3s+ 2

= s
(s+ 2)(s+ 1)

= 2

s+ 2
− 1

s+ 1
(2)

Using the residue function we find,

num = [1,0]; den = [1,3,2];
[r,p] = residue(num,den)

% r =
% 2
% -1
% p =
% -2
% -1

where the residues r1, r2 are the same as A,B. Using the symbolic toolbox and the func-
tion partfrac, we obtain the same PFE result,

syms s
H = s/(s^2+3*s+2);
H = partfrac(H); % H = 2/(s + 2) - 1/(s + 1)

(b) Inverting the PFE in Eq. (2), we find,

h(t)= 2e−2tu(t)−e−tu(t)

where we used the basic transform pair,

e−atu(t) ←→ 1

s+ a
Using the symbolic toolbox, we obtain the same,

syms s
H = s/(s^2+3*s+2);
h = ilaplace(H) % h = 2*exp(-2*t) - exp(-t)

(c) From Eq. (48), we must first determine the solution of the all-pole problem,

ÿn(t)+3ẏn(t)+2yn(t)= 0 , with yn(0)= 0 , ẏn(0)= 1 (3)

where here the initial conditions are the same at t = 0±. Then, since H(s)= B(s)/A(s),
with, B(s)= s, and A(s)= s2 + 3s+ 2, we will obtain h(t) from,

h(t)= b0δ(t)+
[
B(D)yn(t)

]
u(t)= [ẏn(t)]u(t)

The solution of Eq. (3) and its derivative are linear combinations of characteristic modes,

yn(t)= c1e−t + c2e−2t

ẏn(t)= −c1e−t − 2c2e−2t
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The initial conditions result in two equations in the two unknowns c1, c2,

yn(0)= c1 + c2 = 0

ẏn(0)= −c1 − 2c2 = 1
⇒ c1 = 1

c2 = −1

Thus,

yn(t)= e−t − e−2t

ẏn(t)= 2e−2t − e−t ⇒ h(t)= [ẏn(t)]u(t)= [2e−2t − e−t]u(t)
Using the ilaplace function, we obtain the same,

syms s t Yn
Yn = 1/(s^2 + 3*s + 2); % 1/A(s), denominator part of H(s)
yn = ilaplace(Yn) % yn = exp(-t) - exp(-2*t)
h = diff(yn,t) % h = 2*exp(-2*t) - exp(-t)

These operations are equivalent to the more direct approach,

syms s
H = s/(s^2+3*s+2);
h = ilaplace(H) % h = 2*exp(-2*t) - exp(-t)

The same answers for yn(t) and h(t) can also be obtained using the dsolve function,

syms t yn(t)
yn = dsolve(’D2yn + 3*Dyn + 2*yn=0’,’yn(0)=0’,’Dyn(0)=1’)
h = diff(yn,t)

Note that the ilaplace method requires the initial conditions at t = 0−, and the dsolve
method, the conditions at t = 0+. But these are the same for the solution yn(t).
We note also that Yn(s)= 1/A(s), the denominator part of H(s). This is generally true
for any denominator order, and is a consequence of the defining properties of the solution
yn(t), indeed, using the Laplace transforms of the derivatives of yn(t) and incorporating
the initial conditions, we have for the above 2nd order case,

yn(t) ⇒ Yn(s)
ẏn(t) ⇒ sYn(s)−yn(0−)= sYn(s)
ÿn(t) ⇒ s2Yn(s)−syn(0−)−ẏn(0−)= s2Yn(s)−1

(4)

Thus, Eq. (3) transforms into,

ÿn(t)+3ẏn(t)+2yn(t)= 0 ⇒ s2Yn(s)−1+ 3sYn(s)+2Yn(s)= 0 or,

Yn(s)= 1

s2 + 3s+ 2

(d) Let us solve this for arbitrary initial conditions, y(0−)= y0 and ẏ(0−)= ẏ0, and at the
end set y0 = 0 and ẏ0 = −5. Using Eq. (4), the differential equation (1) with x(t)= 0
transforms in the s-domain into,

ÿ(t)+3ẏ(t)+2y(t)= 0 ⇒ s2Y(s)−sy0 − ẏ0 + 3
(
sY(s)−y0

)+ 2Y(s)= 0

Solving for Y(s) and performing its partial fraction expansion, we have,

Y(s)= sy0 + ẏ0 + 3y0

s2 + 3s+ 2
= sy0 + ẏ0 + 3y0

(s+ 1)(s+ 2)
= ẏ0 + 2y0

s+ 1
− ẏ0 + y0

s+ 2

which gives the zero-input response in the time domain,

yzi(t)= (ẏ0 + 2y0)e−t − (ẏ0 + y0)e−2t , t ≥ 0 (5)
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and in the specific case of y0 = 0 and ẏ0 = −5,

yzi(t)= −5e−t + 5e−2t , t ≥ 0 (6)

An alternative approach is to work in the time-domain and express y(t) and its derivative
as a linear combination of characteristic modes, and fix the expansion coefficients from
the initial conditions, that is, set

y(t)= c1e−t + c2e−2t

ẏ(t)= −c1e−t − 2c2e−2t

and at t = 0−, impose the conditions,

y(0−)= c1 + c2 = y0

ẏ(0−)= −c1 − 2c2 = ẏ0
⇒ c1 = ẏ0 + 2y0

c2 = −ẏ0 − y0

which results in the same answer as in Eq. (5). The same expression is obtained using the
ilaplace function of the symbolic toolbox, where y0,dy0 stand for the constants y0, ẏ0,

syms s y0 dy0 Y
Y = solve(s^2*Y-s*y0-dy0 + 3*(s*Y-y0)+2*Y==0,Y)
Y = partfrac(Y,s) % Y = (dy0 + 2*y0)/(s + 1) - (dy0 + y0)/(s + 2)
yzi = ilaplace(Y) % yzi = exp(-t)*(dy0 + 2*y0) - exp(-2*t)*(dy0 + y0)

Alternatively, we can use the dsolve function,

syms y0 dy0
yzi = dsolve(’D2y + 3*Dy+ 2*y = 0’, ’y(0)=y0’, ’Dy(0)=dy0’)

(e) The convolutional expression for the zero-state output is,

yzs(t)=
∫∞
−∞
h(t′)x(t − t′)dt′ (7)

Because the input x(t)= 10e−3tu(t) is causal, the range of its argument in Eq. (7) must
be restricted to, t−t′ ≥ 0. Similarly, because h(t′) is causal, its argument must be t′ ≥ 0.
Combining the two inequalities, we have,

t − t′ ≥ 0
t′ ≥ 0

⇒ t ≥ 0
0 ≤ t′ ≤ t

Thus, yzs(t) must also be causal, and for t ≥ 0, the integral in (7) simplifies into,

yzs(t) =
∫ t

0
h(t′)x(t − t′)dt′ =

∫ t
0
(2e−2t′ − e−t′)10e−3(t−t′)dt′

= 10e−3t
∫ t

0
(2e−2t′ − e−t′)e3t′dt′ = 10e−3t

∫ t
0
(2et

′ − e2t′)dt′

= 10e−3t
[

2(et − 1)−1

2
(e2t − 1)

]
= −5e−t + 20e−2t − 15e−3t

thus,

yzs(t)=
[−5e−t + 20e−2t − 15e−3t]u(t) (8)

The same can also be obtained using the convolution table on p 57 of the SSTA text. The
integration can also be performed with the int function of the symbolic toolbox,

syms t tau
x = 10*exp(-3*(t-tau));
h = 2*exp(-2*tau) - exp(-tau);
yzs = int(h*x, tau, 0, t) % yzs = 20*exp(-2*t) - 5*exp(-t) - 15*exp(-3*t)
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(f) The Laplace transform of the input x(t)= 10e−3tu(t) is, X(s)= 10/(s + 3). It follows
that the transform of the zero-state output will be,

Y(s)= H(s)X(s)= s
s2 + 3s+ 2

· 10

s+ 3
= 10s
(s+ 1)(s+ 2)(s+ 3)

with PFE,†

Y(s)= 10s
(s+ 1)(s+ 2)(s+ 3)

= A
s+ 1

+ B
s+ 2

+ C
s+ 3

where,

A = (s+ 1)Y(s)
∣∣∣∣
s=−1

= 10s
(s+ 2)(s+ 3)

∣∣∣∣
s=−1

= 10(−1)
(−1+ 2)(−1+ 3)

= −5

B = (s+ 2)Y(s)
∣∣∣∣
s=−2

= 10s
(s+ 1)(s+ 3)

∣∣∣∣
s=−2

= 10(−2)
(−2+ 1)(−2+ 3)

= 20

C = (s+ 3)Y(s)
∣∣∣∣
s=−3

= 10s
(s+ 1)(s+ 2)

∣∣∣∣
s=−3

= 10(−3)
(−3+ 1)(−3+ 2)

= −15

Inverting the Laplace transform Y(s), we obtain the time-domain zero-state response,
which agrees with that of Eq. (8),

yzs(t)=
[−5e−t + 20e−2t − 15e−3t]u(t)

The PFE residues can also be obtained by the function residue, where the outputs r1, r2, r3

correspond to C,B,A, respectively,

[r,p] = residue([10,0], conv([1 3 2],[1 3]))

% r =
% -15.0000
% 20.0000
% -5.0000
% p =
% -3.0000
% -2.0000
% -1.0000

The indicated convolution operation, conv([1 3 2],[1 3]), results in the coefficients,
[1, 6, 11, 6], and effectively multiplies the polynomials,

(s2 + 3s+ 2)(s+ 3)= s3 + 6s2 + 11s+ 6

The PFE and the Laplace inversions can also be accomplished with the symbolic toolbox,

syms s
H = s/(s^2+3*s+2);
X = 10/(s+3);
Y = H*X; % Y = 10*s/((s + 3)*(s^2 + 3*s + 2))
Y = partfrac(Y) % Y = 20/(s + 2) - 5/(s + 1) - 15/(s + 3)
yzs = ilaplace(Y) % yzs = 20*exp(-2*t) - 5*exp(-t) - 15*exp(-3*t)

For t ≥ 0, we obtain from the above solution,

yzs(t)= −5e−t + 20e−2t − 15e−3t

ẏzs(t)= 5e−t − 40e−2t + 45e−3t ⇒ yzs(0+)= −5+ 20− 15 = 0

ẏzs(0+)= 5− 40+ 45 = 10

The term, “zero-state” solution refers to zero initial conditions at time t = 0−. As we
see above, at t = 0+ the initial conditions are not zero. See part (h) for more discussion

†Partial fractions are reviewed in Sect. 3.5 of the SSTA text.
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on this issue, and on how to predict the conditions at t = 0+ from those at t = 0−. The
symbolic toolbox solution using the function ilaplace requires the t = 0− conditions,
whereas the solution using dsolve, requires the t = 0+ conditions.

In the present case, since we just found yzs(0+)= 0, ẏzs(0+)= 10, we can apply the
dsolve function, noting that ẋ(t)= −3 · 10e−3t for t ≥ 0+,

syms t yzs(t)
yzs = dsolve(’D2y+3*Dy+2*y = 10*(-3)*exp(-3*t)’, ’y(0)=0’, ’Dy(0)=10’)

which results in the same solution as that of Eq. (8).

(g) Adding up the zero-input and zero-state solutions of Eqs. (5) and (8), and combining like
exponential terms, we obtain the total solution of Eq. (1), which meets the arbitrary initial
conditions, y(0−)= y0, ẏ(0−)= ẏ0,

y(t)= (ẏ0 + 2y0 − 5)e−t + (20− y0 − ẏ0)e−2t − 15e−3t , t ≥ 0+ (9)

and for the particular values, y(0−)= 0, ẏ(0−)= −5,

y(t)= −10e−t + 25e−2t − 15e−3t , t ≥ 0+ (10)

The first two terms depend only on the characteristic modes e−t, e−2t, and are referred
to as the “natural response” or “homogeneous solution”, whereas the last term depends
only on the input x(t)= 10e−3t and is referred to as the “particular solution” or “forced
response”,

y(t)= (ẏ0 + 2y0 − 5)e−t + (20− y0 − ẏ0)e−2t︸ ︷︷ ︸
homogeneous

−15e−3t︸ ︷︷ ︸
forced

The factor −15 in the forced response can be predicted in advance using the follow-
ing result: Given a system with transfer function H(s) and an exponential causal input
x(t)= Ae−at, then the forced response output is simply, yforced(t)= AH(−a)e−at, where
H(−a) is the transfer function H(s) evaluated at s = −a (assuming that s = −a is not
a pole of H(s)

)
. Thus, in our example,

yforced(t)= 10H(−3)e−3t = 10 · s
s2 + 3s+ 2

∣∣∣∣
s=−3

e−3t = −15e−3t

Next, we derive the total solution using Laplace transforms and partial fraction expan-
sions. The approach is similar to that of part (d), except here the right-hand sides are
not zero. For the case of arbitrary initial conditions, y(0−)= y0 and ẏ(0−)= ẏ0, the
transform of the differential equation (1) is,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) ⇒ s2Y(s)−sy0 − ẏ0 + 3
(
sY(s)−y0

)+ 2Y(s)= sX(s)

where the transform of ẋ(t) was, sX(s)−x(0−)= sX(s), since x(0−)= 0 because x(t) is
causal. Solving for Y(s), and replacing X(s)= 10/(s+ 3), we obtain,

Y(s) = sy0 + ẏ0 + 3y0 + sX(s)
s2 + 3s+ 2

= (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s2 + 3s+ 2)(s+ 3)

= (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 1)(s+ 2)(s+ 3)

= A
s+ 1

+ B
s+ 2

+ C
s+ 3

= ẏ0 + 2y0 − 5

s+ 1
+ 20− y0 − ẏ0

s+ 2
− 15

s+ 3

(11)
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where we may verify easily,

A = (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 2)(s+ 3)

∣∣∣∣
s=−1

= ẏ0 + 2y0 − 5

B = (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 1)(s+ 3)

∣∣∣∣
s=−2

= 20− y0 − ẏ0

C = (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 1)(s+ 2)

∣∣∣∣
s=−3

= −15

It follows that the inverse Laplace transform of Eq. (11) is as in Eq. (9). The same partial
fraction expansion and inverse transform can be obtained easily by the symbolic toolbox,

syms s y0 dy0 Y
X = 10/(s+3);
Y = solve(s^2*Y-s*y0-dy0 + 3*(s*Y-y0) + 2*Y == s*X, Y)
Y = partfrac(Y,s) % Y = (dy0+2*y0-5)/(s + 1) + (20-dy0-y0)/(s + 2) - 15/(s + 3)
y = ilaplace(Y) % y = exp(-t)*(dy0+2*y0-5) + exp(-2*t)*(20-dy0-y0) - 15*exp(-3*t)

(h) We recall that for a second-order system of the form,

ÿ(t)+a1ẏ(t)+a2y(t)= b0ẍ(t)+b1ẋ(t)+b2x(t) ⇒ H(s)= b0s2 + b1s+ b2

s2 + a1s+ a2

and for a causal input x(t) that does not have any δ(t) terms at t = 0, the mapping
between the initial conditions at t = 0− and those at t = 0+ is given by,

y(0+) = y(0−)+b0x(0+)

ẏ(0+) = ẏ(0−)+b0ẋ(0+)+(b1 − b0a1)x(0+)
(12)

For our particular system, we have, [b0, b1, b2]= [0,1,0], so that Eqs. (12) become,

y(0+) = y(0−)
ẏ(0+) = ẏ(0−)+x(0+)

(13)

Thus, for the input x(t)= 10e−3tu(t), and initial conditions y0, ẏ0 at t = 0−, we have,

y(0+) = y0

ẏ(0+) = ẏ0 + 10
(14)

These are the conditions that must be used in applying the classical method, or the dsolve
function. In the classical method, we construct the solution as the sum of a particular
solution and a general homogeneous solution. For the particular solution, we may take
the forced response, which in our example is, yforced(t)= −15e−3t. For the homogeneous
solution we form a linear combination of the characteristic modes e−t, e−2t. Thus,

y(t)= c1e−t + c2e−2t − 15e−3t

ẏ(t)= −c1e−t − 2c2e−2t + 45e−3t (classical method)

for t ≥ 0. Imposing the t = 0+ conditions (14), we have,

y(0+)= c1 + c2 − 15 = y0

ẏ(0+)= −c1 − 2c2 + 45 = ẏ0 + 10
⇒ c1 = ẏ0 + 2y0 − 5

c2 = 20− ẏ0 − y0

Thus, we obtain the same solution as that in Eq. (9), for t ≥ 0+,

y(t)= c1e−t + c2e−2t − 15e−3t = (ẏ0 + 2y0 − 5)e−t + (20− y0 − ẏ0)e−2t − 15e−3t

Finally, the same solution can be obtained with the dsolve function applied with the initial
conditions at t = 0+ of Eq. (14),
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syms t y0 dy0 y(t)
dy = diff(y,t); ddy = diff(dy,t);
x = 10*exp(-3*t); dx = diff(x,t);
y = dsolve(ddy + 3*dy + 2*y == dx, y(0) == y0, dy(0) == dy0+10)

(i) Suppose that one naively tries to use the function lsim to compute the system output for
the given input. This can be done simply by the MATLAB code,

t = linspace(0,6,601); % desired range of t’s
x = 10*exp(-3*t); % input signal
s = tf(’s’); % transfer function variable
H = s/(s^2+3*s+2); % transfer function object - class(H) is tf
y = lsim(H,x,t); % assumes zero initial conditions

This code, however, will generate only the zero-state part, yzs(t), of the correct answer.
The function lsim can handle initial conditions, but those are for state-space realizations
only. If the initial conditions are specified in terms of the output y(t) and its derivatives,
then one must map these initial conditions to the proper state-vector initial conditions
to be used in lsim.

Such mapping can be accomplished by the so-called observability matrix (we’ll discuss
it at a later date). The built-in function obsv allows one to perform such mapping and
thus, use lsim with any desired initial conditions at t = 0−. The following MATLAB code
illustrates the procedure.

y0 = 0; dy0 = -5; % given initial conditions at t=0-
t = linspace(0,6,601); % desired time range
x = 10*exp(-3*t); % input signal
s = tf(’s’); % transfer function variable
H = s/(s^2+3*s+2); % transfer function object - class(H) is tf
S = ss(H); % S is state-space model of H - class(S) is ss
yi = [y0; dy0]; % vector of initial conditions with respect to y
xi = obsv(S) \ yi; % map yi to initial state-vector xi
y = lsim(S,x,t,xi); % run model S with initial state xi
yzs = lsim(S,x,t); % run model S with zero initial state xi=0
plot(t,y, t,yzs,’--’); % compare the nonzero-state and zero-state outputs

The computed outputs are shown on the right graph below. Those on the left graph are
the exact responses derived in Eqs. (8) and (9) . They are virtually indistinguishable from
the numerically computed ones using lsim.
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Problem 2

Repeat questions (d–i) of the previous problem, for the same system defined by Eq. (1), but
with input x(t)= 10e−2tu(t), and initial conditions at t = 0−, y(0−)= 2, ẏ(0−)= −7.

Note that parts (a–c) are the same as before. The new input has a pole that coincides with one
of the characteristic modes of the system, and thus, we will have to deal with a double-pole in
the Laplace inverses.

Solution

(d) Because the initial conditions are different from those of Problem 1, the zero-input solu-
tion will also be different. However, the steps are identical to those leading to Eq. (5),

yzi(t)= (ẏ0 + 2y0)e−t − (ẏ0 + y0)e−2t , t ≥ 0 (15)

Replacing the constants by y0 = 2 and ẏ0 = −7, we have,

yzi(t)= 5e−2t − 3e−t , t ≥ 0 (16)

The other methods mentioned in part (d) of Problem 1 remain the same.

(e) The zero-state output will be different here because the input is different. The impulse
response h(t) is the same as in Problem 1, therefore, the convolutional formula gives,

yzs(t) =
∫ t

0
h(t′)x(t − t′)dt′ =

∫ t
0
(2e−2t′ − e−t′)10e−2(t−t′)dt′

= 10e−2t
∫ t

0
(2e−2t′ − e−t′)e2t′dt′ = 10e−2t

∫ t
0
(2− et′)dt′

= 10e−2t [2t − (et − 1)
] = 10e−2t − 10e−t + 20te−2t

so that,
yzs(t)=

[
10e−2t − 10e−t + 20te−2t]u(t) (17)

Using the function int of the symbolic toolbox returns the same answer,

syms t tau
x1 = 10*exp(-2*(t-tau));
h1 = 2*exp(-2*tau) - exp(-tau);
yzs = int(h1*x1, tau, 0, t)

(f) The Laplace transform of the input x(t)= 10e−2tu(t) is, X(s)= 10/(s + 2). It follows
that the transform of the zero-state output will be,

Y(s)= H(s)X(s)= s
s2 + 3s+ 2

· 10

s+ 2
= 10s
(s+ 2)2(s+ 1)

with PFE,

Y(s)= 10s
(s+ 2)2(s+ 1)

= A
s+ 2

+ B
(s+ 2)2

+ C
s+ 1

= 10

s+ 2
+ 20

(s+ 2)2
− 10

s+ 1

where,†

A = d
ds
[
(s+ 2)2Y(s)

]∣∣∣∣
s=−2

= d
ds

[
10s
s+ 1

]
s=−2

= 10

(s+ 1)2

∣∣∣∣
s=−2

= 10

B = (s+ 2)2Y(s)
∣∣∣∣
s=−2

= 10s
s+ 1

∣∣∣∣
s=−2

= 20

C = (s+ 1)Y(s)
∣∣∣∣
s=−1

= 10s
(s+ 2)2

∣∣∣∣
s=−1

= −10

†see Sect. 3.5 of the SSTA text.

9



Inverting the Laplace transform Y(s), we obtain the time-domain zero-state response
yzs(t), which agrees with that of Eq. (17).

yzs(t)=
[
10e−2t − 10e−t + 20te−2t]u(t)

The PFE residues can also be obtained by the function residue, which correctly accounts
for the double pole, where the outputs r1, r2, r3 correspond to A,B,C, respectively,

[r,p] = residue([10,0], conv([1 3 2],[1 2]))

% r =
% 10.0000
% 20.0000
% -10.0000
% p =
% -2.0000
% -2.0000
% -1.0000

The indicated convolution operation, conv([1 3 2],[1 2]), results in the coefficients,
[1, 5, 8, 4], and effectively multiplies the polynomials,

(s2 + 3s+ 2)(s+ 2)= (s+ 2)2(s+ 1)= s3 + 5s2 + 8s+ 4

The PFE and the Laplace inversions can also be accomplished with the ilaplace function,

syms s
H = s/(s^2+3*s+2);
X = 10/(s+2);
Y = H*X; % Y(s) = H(s)*X(s) = 10*s/((s + 2)*(s^2 + 3*s + 2))
Y = partfrac(Y) % Y = 10/(s + 2) - 10/(s + 1) + 20/(s + 2)^2
yzs = ilaplace(Y) % yzs = 10*exp(-2*t) - 10*exp(-t) + 20*t*exp(-2*t))

To derive the solution using the dsolve function, we must transform the initial conditions
of the zero-state solution from their zero values at t = 0− to their values at 0+ using
the mapping of Eq. (12), or, specifically, here, Eq. (14). Thus, we have yzs(0+)= 0, and
ẏzs(0+)= 0+ 10 = 10. The application of dsolve is then,

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
x = 10*exp(-2*t); dx = diff(x,t);
yzs = dsolve(ddy + 3*dy + 2*y == dx, y(0) == 0, dy(0) == 10)

which produces exactly the same expression as in Eq. (17).

(g) Adding up the zero-input and zero-state responses, we obtain the full solution, for t ≥ 0,

yzi(t) = 5e−2t − 3e−t

yzs(t) = 10e−2t − 10e−t + 20te−2t

y(t) = 15e−2t − 13e−t + 20te−2t

(18)

The first two terms represent the “homogeneous” solution and the third, the “forced”
response,

y(t)= 15e−2t − 13e−t︸ ︷︷ ︸
homogeneous

+20te−2t︸ ︷︷ ︸
forced

, t ≥ 0 (19)

The expression 20te−2t for the forced response can be predicted in advance. We recall
from part (g) of Problem 1 that the forced response of a linear system H(s) due to an
exponential input of the form x(t)= Ae−atu(t) is given simply by AH(−a)e−atu(t),
provided that s = −a is not a pole of the system. But if s = −a is a pole of the system

10



(and that pole is assumed to be a simple pole), then, the forced response is given by the
modified expression,

x(t)= Ae−atu(t) −→ yforced(t)= ARte−atu(t) , R = (s+ a)H(s)
∣∣∣∣
s=−a

where the factor (s+ a) will cancel a similar factor in the denominator of H(s). For our
particular example, since A = 10 and s = −2, we have,

AR = 10 (s+ 2)H(s)
∣∣∣∣
s=−2

= (s+ 2)
10s

(s+ 1)(s+ 2)

∣∣∣∣
s=−2

= 10s
s+ 1

∣∣∣∣
s=−2

= 20

Next, we rederive Eq. (19) using Laplace transforms and partial fraction expansions. For
the given initial conditions, y(0−)= 2, ẏ(0−)= −7, the transform of the differential
equation (1) is,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) ⇒ s2Y(s)−2s+ 7+ 3
(
sY(s)−2

)+ 2Y(s)= sX(s)

Solving for Y(s), and replacing X(s)= 10/(s+ 2), we find after some algebra,

Y(s) = 2s2 + 13s− 2

(s+ 2)(s2 + 3s+ 2)
= 2s2 + 13s− 2

s3 + 5s2 + 8s+ 4
= 2s2 + 13s− 2

(s+ 2)2(s+ 1)

= A
s+ 2

+ B
(s+ 2)2

+ C
s+ 1

= 15

s+ 2
+ 20

(s+ 2)2
− 13

s+ 1

(20)

which upon inversion yields exactly Eq. (19). The PFE coefficients can be confirmed using
the residue function,

[r,p] = residue([2, 13, -2], [1, 5, 8, 4])

% r =
% 15.0000
% 20.0000
% -13.0000
% p =
% -2.0000
% -2.0000
% -1.0000

Moreover, the solution for Y(s), its PFE expansion, and inversion can be carried out
simply by the symbolic toolbox,

syms s t Y
X = 10/(s+2);
Y = solve(s^2*Y-s*2+7 + 3*(s*Y-2) + 2*Y == s*X, Y);
Y = simplify(Y) % Y = (2*s^2 + 13*s - 2)/((s + 2)*(s^2 + 3*s + 2))
Y = partfrac(Y,s) % Y = 15/(s + 2) - 13/(s + 1) + 20/(s + 2)^2
y = ilaplace(Y) % y = 15*exp(-2*t) - 13*exp(-t) + 20*t*exp(-2*t)

(h) The initial conditions at t = 0+ can be derived from Eq. (13),

y(0+) = y(0−)= 2

ẏ(0+) = ẏ(0−)+x(0+)= −7+ 10 = 3
(21)

Using these conditions, we may derive the solution of Eq. (19) by the classical method,
in which we construct the solution as the sum of a particular solution and a general
homogeneous solution. For the particular solution, we may take the forced response,
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which in our example is, yforced(t)= 20te−2t. For the homogeneous solution we form a
linear combination of the characteristic modes e−t, e−2t. Thus,

y(t)= c1e−t + c2e−2t + 20te−2t

ẏ(t)= −c1e−t − 2c2e−2t + 20(1− 2t)e−2t (classical method)

for t ≥ 0. Imposing the t = 0+ conditions (14), we have,

y(0+)= c1 + c2 = 2

ẏ(0+)= −c1 − 2c2 + 20 = 3
⇒ c1 = −13

c2 = 15

Thus, we obtain the same solution as that in Eq. (19), for t ≥ 0+,

y(t)= c1e−t + c2e−2t + 20te−2t = −13e−t + 15e−2t + 20te−2t

Finally, the same solution can be obtained with the dsolve function applied with the initial
conditions at t = 0+ of Eq. (21),

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
x = 10*exp(-2*t); dx = diff(x,t);
yy = dsolve(ddy + 3*dy + 2*y == dx, y(0) == 2, dy(0) == 3)

(i) The numerical computation using the lsim function is carried out in exactly the same
way as in part (i) of Problem 1, only the input and initial conditions are different. The
MATLAB code is listed below.

y0 = 2; dy0 = -7; % given initial conditions at t=0-
t = linspace(0,6,601); % desired time range
x = 10*exp(-2*t); % input signal
s = tf(’s’); % transfer function variable
H = s/(s^2+3*s+2); % transfer function object - class(H) is tf
S = ss(H); % S is state-space model of H - class(S) is ss
yi = [y0; dy0]; % vector of initial conditions with respect to y
xi = obsv(S) \ yi; % map yi to initial state-vector xi
y = lsim(S,x,t,xi); % run model S with initial state xi
yzs = lsim(S,x,t); % run model S with zero initial state xi=0
plot(t,y, t,yzs,’--’); % compare the nonzero-state and zero-state outputs

The computed outputs are shown on the right graph below. Those on the left graph are
the exact responses yzs(t), y(t) derived in Eq. (18). They are virtually indistinguishable
from the numerically computed ones using lsim.
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Problem 3

Repeat questions (d–i) of Problem 1, for the same system defined by Eq. (1), but with input
x(t)= (t2 + 5t + 3

)
u(t), and initial conditions at t = 0−, y(0−)= 2, ẏ(0−)= 0.

This example illustrates how to handle non-exponential inputs and how to guess the corre-
sponding forced response. Note that parts (a–c) are the same as in Problem 1.

Solution

(d) Because the initial conditions are different from those of Problems 1 and 2, the zero-input
solution will also be different. However, the steps are identical to those leading to Eq. (5),

yzi(t)= (ẏ0 + 2y0)e−t − (ẏ0 + y0)e−2t , t ≥ 0 (22)

Replacing the constants by y0 = 2 and ẏ0 = 0, we have,

yzi(t)= 4e−t − 2e−2t , t ≥ 0 (23)

(e) The impulse response h(t) is the same as in Problem 1, therefore, the convolutional
formula gives, for the given input,

yzs(t) =
∫ t

0
h(t′)x(t − t′)dt′ =

∫ t
0

[
2e−2t′ − e−t′][(t − t′)2+5(t − t′)+3

]
dt′

=
∫ t

0

[
2e−2t′ − e−t′][t2 + t′2 − 2tt′ + 5t − 5t′ + 3

]
dt′

The integrations can be done with the help of the following integrals (set a = 1, a = 2),

∫ t
0
e−at

′
dt′ = 1− e−at

a
,
∫ t

0
t′e−at

′
dt′ = 1− e−at(1+ at)

a2

∫ t
0
t′2e−at

′
dt′ = 2− e−at(2+ 2at + a2t2)

a3

eventually resulting in,
yzs(t)=

(
1+ t − e−2t)u(t) (24)

The disappearance of the e−t term is explained below in part (f). Using the function int
of the symbolic toolbox returns the same answer as Eq. (24)

syms t tau
x1 = (t-tau)^2 + 5*(t-tau) + 3;
h1 = 2*exp(-2*tau) - exp(-tau);
y1 = int(h1*x1, tau, 0, t) % yzs = t - exp(-2*t) + 1

(f) The Laplace transform of the input x(t)= (t2 + 5t + 3)u(t) is,

X(s)= 2

s3
+ 5

s2
+ 3

s
= 3s2 + 5s+ 2

s3
= (s+ 1)(3s+ 2)

s3

Thus, accidentally, X(s) contains a zero-factor (s + 1), which will get cancelled by the
same pole factor of H(s) when computing the Laplace transform of the zero-state re-
sponse, that is,

Y(s)= H(s)X(s) = s
(s+ 1)(s+ 2)

· (s+ 1)(3s+ 2)
s3

= 3s+ 2

s2(s+ 2)

= A
s
+ B
s2
+ C
s+ 2

= 1

s
+ 1

s2
− 1

s+ 2

(25)
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where the PFE coefficients are computed in the usual manner,

A = d
ds
[
s2Y(s)

]∣∣∣∣
s=0
= d
ds

[
3s+ 2

s+ 2

]
s=0
= 4

(s+ 2)2

∣∣∣∣
s=0
= 1

B = s2Y(s)
∣∣∣∣
s=0
= 3s+ 2

s+ 2

∣∣∣∣
s=0
= 1

C = (s+ 2)Y(s)
∣∣∣∣
s=−2

= 3s+ 2

s2

∣∣∣∣
s=−2

= −1

which can also be obtained by the residue function,

[r,p] = residue([3,2],[1,2,0,0])

% r =
% -1
% 1
% 1
% p =
% -2
% 0
% 0

The inversion of Eq. (25) leads directly to Eq. (24). The inversion using the symbolic
toolbox leads to the same answer,

syms s t
H = s/(s^2+3*s+2); % system
x = t^2 + 5*t + 3; % input
X = simplify(laplace(x)) % X = (3*s^2 + 5*s + 2)/s^3
Y = simplify(H*X); % Y = (3*s + 2)/(s^2*(s + 2))
Y = partfrac(Y) % Y = 1/s +1/s^2 - 1/(s + 2)
yzs = ilaplace(Y) % yzs = 1 + t - exp(-2*t)

To derive the solution using the dsolve function, we must transform the initial conditions
of the zero-state solution from their zero values at t = 0− to their values at 0+ using the
mapping of Eq. (12), or, since now, x(0+)= 3, we have, yzs(0+)= 0, ẏzs(0+)= 0+3 = 3.
The application of dsolve is then,

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
x = t^2 + 5*t + 3; dx = diff(x,t);
yzs = dsolve(ddy + 3*dy + 2*y == dx, y(0) == 0, dy(0) == 3)

which produces exactly the same expression as in Eq. (24).

(g) Adding up the zero-input and zero-state responses, we obtain the full solution, for t ≥ 0,

yzi(t) = 4e−t − 2e−2t

yzs(t) = 1+ t − e−2t

y(t) = 4e−t − 3e−2t + 1+ t
(26)

The first two terms represent the “homogeneous” solution and the third, the “forced”
response,

y(t)= 4e−t − 3e−2t︸ ︷︷ ︸
homogeneous

+1+ t︸ ︷︷ ︸
forced

, t ≥ 0 (27)

The expression 1+t for the forced response can be worked out in advance by the following
argument. Since the input is a quadratic polynomial in t, we may seek a forced response
that is a similar 2nd order polynomial. However, because the input gets differentiated
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in the right-hand-side of Eq. (1), it will become first-order in t. Thus, we seek a forced
response of the form y(t)= β0 + β1t. Inserting this into Eq. (1) gives,

ÿ + 3ẏ + 2y = ẋ ⇒ 0+ 3β1 + 2(β0 + β1t)= 2t + 5

Matching like powers of t, gives the two equations in β0, β1,

5β0 = 5
2β1 = 2

⇒ β0 = 1
β1 = 1

Thus, the forced response to the input, x(t)= t2 + 5t + 3, is yforced(t)= β0 + β1t =
1+t. Next, we rederive Eq. (27) using Laplace transforms and partial fraction expansions.
For the given initial conditions, y(0−)= 2, ẏ(0−)= 0, the transform of the differential
equation (1) is,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) ⇒ s2Y(s)−2s+ 3
(
sY(s)−2

)+ 2Y(s)= sX(s)

Solving for Y(s), and replacing X(s)= (3s2 + 5s+ 2)/s3, we find after some algebra,

Y(s)= 2s3 + 9s2 + 5s+ 2

s2(s2 + 3s+ 2)
= 2s3 + 9s2 + 5s+ 2

s2(s+ 1)(s+ 2)
= 4

s+ 1
− 3

s+ 2
+ 1

s
+ 1

s2
(28)

where we omitted the details of the PFE expansion. The inversion of Eq. (28) leads to (27).
The symbolic toolbox derivation of this result is straightforward,

syms s t Y
X = simplify(laplace(t^2+5*t+3))
Y = solve(s^2*Y-s*2 + 3*(s*Y-2) + 2*Y == s*X, Y)
Y = simplify(Y) % Y = (2*s^3 + 9*s^2 + 5*s + 2)/(s^2*(s^2 + 3*s + 2))
Y = partfrac(Y,s) % Y = 4/(s + 1) - 3/(s + 2) + 1/s + 1/s^2
yt = ilaplace(Y) % y = 4*exp(-t) - 3*exp(-2*t) + 1 + t

(h) Next, we work out the full solution of Eq. (27) using the classical method applied with the
t = 0+ initial conditions, y(0+)= 2, ẏ(0+)= 3. Forming the sum of the forced response
and a linear combination of the characteristic modes, we have,

y(t)= c1e−t + c2e−2t + 1+ t
ẏ(t)= −c1e−t − 2c2e−2t + 1

(classical method)

for t ≥ 0. Imposing the t = 0+ conditions, we find,

y(0+)= c1 + c2 + 1 = 2

ẏ(0+)= −c1 − 2c2 + 1 = 3
⇒ c1 = 4

c2 = −3

Thus, we obtain the same solution as that in Eq. (27), for t ≥ 0+,

y(t)= c1e−t + c2e−2t + 1+ t = 4e−t − 3e−2t + 1+ t

Finally, the same solution can be obtained with the dsolve function applied with the initial
conditions at t = 0+,

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
x = t^2 + 5*t + 3; dx = diff(x,t);
y = dsolve(ddy + 3*dy + 2*y == dx, y(0) == 2, dy(0) == 3)

(i) The numerical computation using the lsim function is carried out in exactly the same
way as in the previous problems, only the input and initial conditions are different. The
MATLAB code is listed below.
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y0 = 2; dy0 = 0; % given initial conditions at t=0-
t = linspace(0,6,601); % desired time range
x = t.^2 + 5*t + 3; % input signal
s = tf(’s’); % transfer function variable
H = s/(s^2+3*s+2); % transfer function object - class(H) is tf
S = ss(H); % S is state-space model of H - class(S) is ss
yi = [y0; dy0]; % vector of initial conditions with respect to y
xi = obsv(S) \ yi; % map yi to initial state-vector xi
y = lsim(S,x,t,xi); % run model S with initial state xi
yzs = lsim(S,x,t); % run model S with zero initial state xi=0
plot(t,y, t,yzs,’--’); % compare the nonzero-state and zero-state outputs

The computed outputs are shown on the right graph below. Those on the left graph are
the exact responses yzs(t), y(t) derived in Eq. (26). They are virtually indistinguishable
from the numerically computed ones using lsim.
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Problem 4

Repeat questions (a–i) of Problem 1 for the following linear system,

ÿ(t)+4ẏ(t)+3y(t)= 2ẍ(t)+ẋ(t)+x(t)

(D2 + 4D+ 3)y(t)= (2D2 +D+ 1)x(t) , D = d
dt

(29)

with initial conditions, y(0−)= 2, ẏ(0−)= −4, and driven by the causal input,

x(t)= e−2tu(t) (30)

This problem illustrates how to handle systems that have numerator and denominator of the
same order, so that their impulse response has a delta-function term, and also how to handle
the mapping between t = 0− and t = 0+ initial conditions in the more general case of Eq. (12).

Solution

(a) Taking Laplace transforms of both sides of Eq. (29) with no initial conditions, we have,

s2Y(s)+4sY(s)+3Y(s)= 2s2X(s)+sX(s)+X(s) ⇒ H(s)= Y(s)
X(s)

= 2s2 + s+ 1

s2 + 4s+ 3
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Note the factorization,
s2 + 4s+ 3 = (s+ 1)(s+ 3)

Thus, the system’s poles are at s = −1 and s = −3. After long division and PFE, we find,

H(s)= 2s2 + s+ 1

s2 + 4s+ 3
= 2− 7s+ 5

s2 + 4s+ 3
= 2− 7s+ 5

(s+ 1)(s+ 3)
= 2+ 1

s+ 1
− 8

s+ 3

These can also be found with the residue function,

[r,p,k] = residue([2,1,1],[1,4,3])
% r =
% -8
% 1
% p =
% -3
% -1
% k =
% 2

Using the symbolic toolbox, we obtain the same PFE,

syms s
H = (2*s^2 + s + 1)/(s^2+4*s+3);
H = partfrac(H) % H = 1/(s + 1) - 8/(s + 3) + 2

(b) Inverting the PFE of H(s), we find,

h(t)= 2δ(t)+[e−t − 8e−3t]u(t)
where the constant term inverted into a Dirac delta. Using the symbolic toolbox, we obtain
the same,

syms s
H = (2*s^2 + s + 1)/(s^2+4*s+3);
H = partfrac(H)
h = ilaplace(H) % h = exp(-t) - 8*exp(-3*t) + 2*dirac(t)

(c) From Eq. (48), we must first determine the solution of the all-pole problem,

ÿn(t)+4ẏn(t)+3yn(t)= 0 , with yn(0)= 0 , ẏn(0)= 1 (31)

Then, since H(s)= B(s)/A(s), with, B(s)= 2s2 + s+ 1, and A(s)= s2 + 4s+ 3, we can
obtain h(t) from,

h(t)= b0δ(t)+
[
B(D)yn(t)

]
u(t)= 2δ(t)+[2ÿn(t)+ẏn(t)+yn(t)]u(t)

The solution of Eq. (31) and its derivative are linear combinations of characteristic modes,

yn(t)= c1e−t + c2e−3t

ẏn(t)= −c1e−t − 3c2e−3t

The initial conditions give two equations in the unknowns c1, c2,

yn(0)= c1 + c2 = 0

ẏn(0)= −c1 − 3c2 = 1
⇒

c1 = 1

2

c2 = −1

2

Thus,

yn(t)= 1

2
e−t − 1

2
e−3t

ẏn(t)= 3

2
e−3t − 1

2
e−t

ÿn(t)= 1

2
e−t − 9

2
e−3t

⇒
h(t) = 2δ(t)+[2ÿn(t)+ẏn(t)+yn(t)]u(t)

= 2δ(t)+[e−t − 8e−3t]u(t)

Using the ilaplace function, we obtain the same,
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syms s t Yn
Yn = 1/(s^2 + 4*s + 3); % denominator part of H(s)
yn = ilaplace(Yn) % yn = exp(-t)/2 - exp(-3*t)/2
h = 2*dirac(t) + 2*diff(yn,t,2) + diff(yn,t) + yn

The same answers for yn(t) and h(t) can also be obtained using the dsolve function,

syms t yn(t)
yn = dsolve(’D2yn + 4*Dyn + 3*yn=0’,’yn(0)=0’,’Dyn(0)=1’)
h = 2*dirac(t) + 2*diff(yn,t,2) + diff(yn,t) + yn

(d) For the given initial conditions, y(0−)= 2 and ẏ(0−)= −4, the differential equation (29)
with x(t)= 0 transforms in the s-domain into,

ÿ(t)+4ẏ(t)+3y(t)= 0 ⇒ s2Y(s)−2s+ 4+ 4
(
sY(s)−2

)+ 3Y(s)= 0

Solving for Y(s) and performing its partial fraction expansion, we have,

Y(s)= 2s+ 4

s2 + 4s+ 3
= 2s+ 4

(s+ 1)(s+ 3)
= 1

s+ 1
+ 1

s+ 3

which gives the zero-input response in the time domain,

yzi(t)= e−t + e−3t , t ≥ 0 (32)

An alternative approach is to work in the time-domain and express y(t) and its derivative
as a linear combination of characteristic modes, and fix the expansion coefficients from
the initial conditions, that is, set

y(t)= c1e−t + c2e−3t

ẏ(t)= −c1e−t − 3c2e−3t

and at t = 0−, impose the conditions,

y(0−)= c1 + c2 = 2

ẏ(0−)= −c1 − 3c2 = −4
⇒ c1 = 1

c2 = 1

which results in the same answer as in Eq. (32). The same expression is obtained using
the ilaplace function of the symbolic toolbox,

syms s Y
Y = solve(s^2*Y-s*2+4 + 4*(s*Y-2)+3*Y == 0,Y) % Y = (2*s + 4)/(s^2 + 4*s + 3)
Y = partfrac(Y,s) % Y = 1/(s + 1) + 1/(s + 3)
yzi = ilaplace(Y) % yzi = exp(-t) + exp(-3*t)

Alternatively, we can use the dsolve function (here, the t = 0± conditions are the same),

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
yzi = dsolve(ddy + 4*dy + 3*y == 0, y(0) == 2, dy(0) == -4)

(e) The convolutional expression for the zero-state output is,

yzs(t)=
∫∞
−∞
h(t′)x(t − t′)dt′

Separating out the delta-function term of h(t), we may write,

h(t)= 2δ(t)+g(t) , g(t)= [e−t − 8e−3t]u(t)
and the convolution integral becomes, for t ≥ 0,

yzs(t)=
∫∞
−∞
[
2δ(t′)+g(t′)]x(t − t′)dt′ = 2x(t)+

∫ t
0
g(t′)x(t − t′)dt′
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and for the given input, x(t)= e−2tu(t), we find for t ≥ 0,

yzs(t) = 2e−2t +
∫ t

0
(e−t

′ − 8e−3t′)e−2(t−t′)dt′

= 2e−2t + e−2t
∫ t

0
(e−t

′ − 8e−3t′)e2t′dt′ = 2e−2t + e−2t
∫ t

0
(et

′ − 8e−t
′
)dt′

= 2e−2t + e−2t[(et − 1)−8(1− e−t)]

thus,
yzs(t)= e−t + 8e−3t − 7e−2t , t ≥ 0 (33)

(f) The Laplace transform of the input x(t)= e−2tu(t) is, X(s)= 1/(s + 2). It follows that
the transform of the zero-state output and its PFE will be,

Y(s)= H(s)X(s)= 2s2 + s+ 1

s2 + 4s+ 3
· 1

s+ 2
= 2s2 + s+ 1

(s+ 1)(s+ 2)(s+ 3)
= 1

s+ 1
− 7

s+ 2
+ 8

s+ 3

Inverting the Laplace transform Y(s), we obtain the same zero-state response of Eq. (33).
The PFE residues can also be obtained by the function residue,

[r,p] = residue([2 1 1], conv([1 4 3],[1 2]))
% r =
% 8.0000
% -7.0000
% 1.0000
% p =
% -3.0000
% -2.0000
% -1.0000

The PFE and the Laplace inversions can also be accomplished with the symbolic toolbox,

syms s
H = (2*s^2 + s + 1)/(s^2+4*s+3);
X = 1/(s+2);
Y = H*X; % Y(s) = (2*s^2 + s + 1)/((s + 2)*(s^2 + 4*s + 3))
Y = partfrac(Y) % Y = 1/(s + 1) - 7/(s + 2) + 8/(s + 3)
yzs = ilaplace(Y) % yzs = exp(-t) - 7*exp(-2*t) + 8*exp(-3*t)

(g) Adding up the zero-input and zero-state responses, we obtain the full solution, for t ≥ 0,

yzi(t) = e−t + e−3t

yzs(t) = e−t + 8e−3t − 7e−2t

y(t) = 2e−t + 9e−3t − 7e−2t

(34)

The first two terms represent the “homogeneous” solution and the third, the “forced”
response,

y(t)= 2e−t + 9e−3t︸ ︷︷ ︸
homogeneous

−7e−2t︸ ︷︷ ︸
forced

, t ≥ 0 (35)

As in Problem 1, the forced response can be predicted in advance by the rule,

x(t)= e−at −→ yforced(t)= H(−a)e−at

where with a = 2, we evaluate H(−a)= −7. Next, we rederive Eq. (35) using Laplace
transforms and partial fraction expansions. For the given initial conditions, y(0−)= 2,
ẏ(0−)= −4, the transform of the differential equation (29) is,

ÿ(t)+4ẏ(t)+3y(t)= 2ẍ(t)+ẋ(t)+x(t) ⇒
s2Y(s)−2s+ 4+ 4

(
sY(s)−2

)+ 3Y(s)= (2s2 + s+ 1)X(s)

19



Solving for Y(s), and replacing X(s)= 1/(s+ 2), we find after some algebra,

Y(s)= 4s2 + 9s+ 9

(s+ 2)(s2 + 4s+ 3)
= 2

s+ 1
+ 9

s+ 3
− 7

s+ 2
(36)

which upon inversion yields exactly Eq. (35). The solution for Y(s), its PFE expansion,
and inversion can also be carried out simply by the symbolic toolbox,

syms s Y
X = 1/(s+2);
Y = solve(s^2*Y-s*2+4 + 4*(s*Y-2) + 3*Y == (2*s^2+s+1)*X, Y)
Y = partfrac(Y,s)
y = ilaplace(Y)

(h) We recall that for a second-order system of the form,

ÿ(t)+a1ẏ(t)+a2y(t)= b0ẍ(t)+b1ẋ(t)+b2x(t) ⇒ H(s)= b0s2 + b1s+ b2

s2 + a1s+ a2

and for a causal input x(t) that has no delta-function singularities, the mapping between
the initial conditions at t = 0− and the initial conditions at t = 0+ is given by,

y(0+) = y(0−)+b0x(0+)

ẏ(0+) = ẏ(0−)+b0ẋ(0+)+(b1 − b0a1)x(0+)
(37)

For our particular system, we have, [b0, b1, b2]= [2,1,1], and [a1, a2]= [4,3], so that
b0 = 2, b1 = 1, a1 = 4, and Eqs. (37) become,

y(0+) = y(0−)+2x(0+)

ẏ(0+) = ẏ(0−)+2 ẋ(0+)−7x(0+)
(38)

Thus, for the input x(t)= e−2tu(t), and the given initial conditions at t = 0−, we have,
x(0+)= 1 and ẋ(0+)= −2, so that

y(0+) = 2+ 2 = 4

ẏ(0+) = −4− 4− 7 = −15
(39)

Using these conditions, we may derive the solution of Eq. (35) by the classical method,
in which we construct the solution as the sum of a particular solution and a general
homogeneous solution. For the particular solution, we may take the forced response,
which in our example is, yforced(t)= −7e−2t. For the homogeneous solution we form a
linear combination of the characteristic modes e−t, e−3t. Thus,

y(t)= c1e−t + c2e−3t − 7e−2t

ẏ(t)= −c1e−t − 3c2e−3t + 14e−2t (classical method)

for t ≥ 0. Imposing the t = 0+ conditions (39), we have,

y(0+)= c1 + c2 − 7 = 4

ẏ(0+)= −c1 − 3c2 + 14 = −15
⇒ c1 = 2

c2 = 9

Thus, we obtain the same solution as that in Eq. (35), for t ≥ 0+,

y(t)= c1e−t + c2e−3t − 7e−2t = 2e−t + 9e−3t − 7e−2t

Finally, the same solution can be obtained with the dsolve function applied with the initial
conditions at t = 0+ of Eq. (39),
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syms t y(t)
x = exp(-2*t);
dy = diff(y,t); ddy = diff(dy,t);
dx = diff(x,t); ddx = diff(dx,t);
y = dsolve(ddy + 4*dy + 3*y == 2*ddx+dx+x, y(0) == 4, dy(0) == -15)

We finish with some remarks on the 0− and 0+ approaches. In both cases, displayed
in Eq. (40), the total solution is written as a sum of a “homogeneous” solution and a
“particular” inhomogeneous solution.

y(t)= e−t + e−3t︸ ︷︷ ︸
zero-input

+e−t + 8e−3t − 7e−2t︸ ︷︷ ︸
zero-state

= 2e−t + 9e−3t︸ ︷︷ ︸
homogeneous

−7e−2t︸ ︷︷ ︸
forced

, t ≥ 0 (40)

In the 0− approach, the zero-state part is such a particular solution which is computable
independently of the initial conditions using convolution, h(t)∗x(t), or by inverting,
H(s)X(s), while the zero-input part is a homogeneous solution whose coefficients c1, c2

are determined from the t = 0− conditions.
On the other hand, in the 0+ approach the particular solution is the forced response,
while the homogeneous part is determined by fixing its coefficients c1, c2 from the t = 0+
conditions.
In the 0− approach, the coefficients of the homogeneous parts arising from the zero-input
and zero-state components combine to give the net homogeneous coefficients of the 0+
approach.
Whether one uses the 0− or the 0+ approach depends on how the problem is posed. It
is evident that the decomposition into a homogeneous and a particular solution is not
unique since we can always add some arbitrary homogeneous terms to the homogeneous
part while subtracting them from the particular part. However, the above two specific
ways of decomposing are convenient in terms of applying the initial conditions and in
terms of guessing the particular solution. These remarks are valid more generally, not
just in the second-order case of the present example.

(i) The numerical computation using the lsim function is carried out in exactly the same way
as in the previous problems. The MATLAB code is listed below.

y0 = 2; dy0 = -4; % given initial conditions at t=0-
t = linspace(0,4,401); % desired time range
x = exp(-2*t); % input signal
s = tf(’s’); % transfer function variable
H = (2*s^2+s+1)/(s^2+4*s+3); % transfer function object - class(H) is tf
S = ss(H); % S is state-space model of H - class(S) is ss
yi = [y0; dy0]; % vector of initial conditions with respect to y
xi = obsv(S) \ yi; % initial state-vector
y = lsim(S,x,t,xi); % run with initial state xi
yzs = lsim(S,x,t); % run with zero initial state xi=0
plot(t,y, t,yzs,’--’); % compare the nonzero-state and zero-state outputs
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Problem 5

Repeat questions (d–h) of Problem 1 for the following linear system,

ÿ(t)+4ẏ(t)+3y(t)= 2ẍ(t)+ẋ(t)+x(t)

(D2 + 4D+ 3)y(t)= (2D2 +D+ 1)x(t) , D = d
dt

(41)

with initial conditions, y(0−)= 1, ẏ(0−)= 3, and driven by the causal sinusoidal input,

x(t)= 10 cos(t)u(t) (42)

Solution

The transfer function and impulse response are the same as in the previous problem,

h(t) = 2δ(t)+(e−t − 8e−3t)u(t)
H(s) = 2s2 + s+ 1

s2 + 4s+ 3

We note that since x(0+)= 10 and ẋ(0+)= 0, the initial conditions at t = 0− map as follows
to those at t = 0+ according to Eq. (12),

y(0+) = y(0−)+b0x(0+)= 1+ 2 · 10 = 21

ẏ(0+) = ẏ(0−)+b0ẋ(0+)+(b1 − b0a1)x(0+)= 3+ 2·0+ (1− 4·2)10 = −67
(43)

(d) For the given initial conditions, y(0−)= 1 and ẏ(0−)= 3,† the differential equation (41)
with x(t)= 0 transforms in the s-domain into,

ÿ(t)+4ẏ(t)+3y(t)= 0 ⇒ (
s2Y(s)−s+ 3

)+ 4
(
sY(s)−1

)+ 3Y(s)= 0

Solving for Y(s) and performing its partial fraction expansion, we have,

Y(s)= s+ 7

s2 + 4s+ 3
= s+ 7

(s+ 1)(s+ 3)
= 3

s+ 1
− 2

s+ 3

which gives the zero-input response in the time domain,

yzi(t)= 3e−t − 2e−3t , t ≥ 0 (44)

An alternative approach is to work in the time-domain and express yzi(t) and its deriva-
tive as a linear combination of characteristic modes, and fix the expansion coefficients
from the initial conditions, that is, set

yzi(t)= c1e−t + c2e−3t

ẏzi(t)= −c1e−t − 3c2e−3t

and at t = 0−, impose the conditions,

yzi(0−)= c1 + c2 = 1

ẏzi(0−)= −c1 − 3c2 = 3
⇒ c1 = 3

c2 = −2

which results in the same answer as in Eq. (44). The same expression is obtained using
the ilaplace function of the symbolic toolbox,

†the ICs for the zero-input solution are the same as the ICs of the total solution, see discussion in set-3.
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syms s Y
Y = solve(s^2*Y-s+3 + 4*(s*Y-1)+3*Y == 0,Y) % Y = (s + 7)/(s^2 + 4*s + 3)
Y = partfrac(Y,s) % Y = 3/(s + 1) - 2/(s + 3)
yzi = ilaplace(Y) % yzi = 3*exp(-t) - 2*exp(-3*t)

Alternatively, we can use the dsolve function (here, the t = 0± conditions are the same),

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
yzi = dsolve(ddy + 4*dy + 3*y == 0, y(0) == 1, dy(0) == 3)

(e) The convolutional expression for the zero-state output is,

yzs(t)=
∫∞
−∞
h(t′)x(t − t′)dt′

Separating out the delta-function term of h(t), we may write,

h(t)= 2δ(t)+g(t) , g(t)= [e−t − 8e−3t]u(t)
and the convolution integral becomes, for t ≥ 0,

yzs(t)=
∫∞
−∞
[
2δ(t′)+g(t′)]x(t − t′)dt′ = 2x(t)+

∫ t
0
g(t′)x(t − t′)dt′

and for the given input, x(t)= 10 cos(t)u(t), we find for t ≥ 0,

yzs(t) = 20 cos(t)+
∫ t

0
(e−t

′ − 8e−3t′)10 cos(t − t′)dt′

= 20 cos(t)+24e−3t − 5e−t − 19 cos(t)−3 sin(t)

or, simplifying,

yzs(t)= 24e−3t − 5e−t + cos(t)−3 sin(t) , t ≥ 0 (45)

(f) The Laplace transform of the input is,

X(s)= 10s
s2 + 1

= 10s
(s− j)(s+ j)

and, the Laplace transform of the zero-state output, including its PFE expansion,

Y(s)= H(s)X(s) = 10s(2s2 + s+ 1)
(s2 + 4s+ 3)(s2 + 1)

= 10s(2s2 + s+ 1)
(s+ 3)(s+ 1)(s− j)(s+ j)

= 24

s+ 3
− 5

s+ 1
+

1
2(1+ 3j)
s− j +

1
2(1− 3j)
s+ j

= 24

s+ 3
− 5

s+ 1
+ s− 3

s2 + 1

= 24

s+ 3
− 5

s+ 1
+ s
s2 + 1

− 3

s2 + 1

The inverse Laplace transform of the last expression coincides with that of Eq. (45). The
symbolic toolbox calculation, listed below, gives the same result.

syms s
syms t real
H = (2*s^2 + s + 1)/(s^2+4*s+3);
x = 10*cos(1*t);
X = laplace(x);
Y = H*X;
Y = partfrac(Y,’factormode’,’full’) % lists complex poles separately
% Y = partfrac(Y) % combines complex poles together
yzs = ilaplace(Y)
yzs = real(yzs) % yzs = 24*exp(-3*t) - 5*exp(-t) + cos(t) - 3*sin(t)
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Alternatively, we can use the dsolve function, where now the proper t = 0+ initial
conditions can be obtained from Eq. (43) by setting the t = 0− conditions to zero,
yzs(0−)= ẏzs(0−)= 0, wich gives the values, yzs(0+)= 20 and ẏzs(0+)= −70.

syms t y(t)
x = 10*cos(t);
dy = diff(y,t); ddy = diff(dy,t);
dx = diff(x,t); ddx = diff(dx,t);
yzs = dsolve(ddy + 4*dy + 3*y == 2*ddx + dx + x, y(0)==20, dy(0)==-70)
% yzs = 24*exp(-3*t) - 5*exp(-t) + 10^(1/2)*cos(t + atan(3))
% = 24*exp(-3*t) - 5*exp(-t) + cos(t) -3*sin(t)

(g-h) Adding up the zero-input and zero-state responses, we obtain the full solution, for t ≥ 0,

yzi(t) = 3e−t − 2e−3t

yzs(t) = 24e−3t − 5e−t + cos(t)−3 sin(t)

y(t)= yzi(t)+yzs(t) = 3e−t − 2e−3t︸ ︷︷ ︸
zero-input

+24e−3t − 5e−t + cos(t)−3 sin(t)︸ ︷︷ ︸
zero-state

= 22e−3t − 2e−t︸ ︷︷ ︸
homogeneous

+ cos(t)−3 sin(t)︸ ︷︷ ︸
forced response

(46)

The first two terms represent the “homogeneous” solution and the last two, the “forced”
response. The sinusoidal forced response can be predicted in advance by the rules,

x(t)= ejω0t ⇒ yforced(t)= H(ω0)ejω0t

x(t)= cos(ω0t) ⇒ yforced(t)= Re
[
H(ω0)ejω0t

]
x(t)= sin(ω0t) ⇒ yforced(t)= Im

[
H(ω0)ejω0t

]
where here, ω0 = 1, and the frequency response is evaluated to be,

H(ω0)= H(s)
∣∣
s=jω0

= 2s2 + s+ 1

s2 + 4s+ 3

∣∣∣∣∣
s=jω0

= 2j2 + j + 1

j2 + 4j + 3
= 1+ 3j

10

and the forced response to the input, 10 cos t, becomes,†

10 · Re
[

1+ 3j
10

ejt
]
= Re

[
(1+ 3j)ejt

] = cos t − 3 sin t

Once we know the forced response, we can determine the homogeneous part by express-
ing it as a linear combination of characteristic modes, resulting in the total solution and
its derivative,

y(t) = c1e−3t + c2e−t + cos t − 3 sin t

ẏ(t) = −3c1e−3t − c2e−t − sin t − 3 cos t

and fixing the coefficients by applying the t = 0+ initial conditions of Eq. (43), as in the
classical method, that is,

y(0+) = c1 + c2 + 1 = 21

ẏ(0+) = −3c1 − c2 − 3 = −67
⇒

c1 = 22

c2 = −2

Finally, we can derive the full solution (46) using Laplace transforms with the given t = 0−
initial conditions, y(0−)= 1, ẏ(0−)= 3. The transform of the differential equation gives
the algebraic equation,

(
s2Y(s)−s− 3

)+ 4
(
sY(s)−1

)+ 3Y(s)= (2s2 + s+ 1)X(s)= (2s2 + s+ 1)
10s
s2 + 1

†the polar representation is, cos t − 3 sin t = √10 cos(t + atan3).
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with solution and PFE,

Y(s)= 21s3 + 17s2 + 11s+ 7

(s2 + 4s+ 3)(s+1)
= 22

s+ 3
− 2

s+ 1
+ s
s2 + 1

− 3

s2 + 1

resulting in Eq. (46),
y(t)= 22e−3t − 2e−t + cos(t)−3 sin(t)

The MATLAB code for that is simply,

y0=1; dy0=3;
syms s t Y
x = 10*cos(t);
X = laplace(x);
Y = solve((s^2*Y-s*y0-dy0) + 4*(s*Y-y0)+3*Y == (2*s^2+s+1)*X, Y)
Y = partfrac(Y,s) % Y = 2/(s + 3) - 2/(s + 1) + (s - 3)/(s^2 + 1)
y = ilaplace(Y) % y = 22*exp(-3*t) - 2*exp(-t) + cos(t) - 3*sin(t

The figure below plots x(t) and y(t), showing how the output becomes sinusoidal after
the initial transients have died out.
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Problem 6

Consider the following system identification examples. Please solve them analytically (i.e. by
hand) and by using MATLAB’s symbolic toolbox.

(a) The zero-state response of an unknown causal LTI system H to a unit-step input is,

u(t) H−→ e−tu(t)−e−3tu(t)

Determine the impulse response h(t) by working exclusively in the time domain. Then,
determine it again by working in the s-domain and inverting its transfer function H(s).

(b) The input and corresponding zero-state output of an unknown causal LTI system are
shown below,

e−tu(t) H−→ e−2tu(t)−e−3tu(t)

Determine the system transfer function H(s), and from it, the impulse response h(t).

(c) An unknown signal x(t) is send to the input of the system found in part (b) and the
following zero-state output is observed,

?
H−→ te−2tu(t)

Determine x(t). Without any further calculations, determine the input that would cause
the following zero-state output and justify your answer,

?
H−→ (t − 5)e−2(t−5)u(t − 5)

Solution

(a) Working in the time domain, the zero-state output is related to the input by convolution,

y(t)=
∫ t

0
h(t′)x(t − t′)dt′ =

∫ t
0
h(t′)u(t − t′)dt′ =

∫ t
0
h(t′)dt′

where the limits were determined by the assumed causality of the input and system, and
we replaced the unit-step input, x(t − t′)= u(t − t′)= 1, because t − t′ ≥ 0. Thus,
differentiating both sides, we obtain for t ≥ 0,

h(t)= dy(t)
dt

= d
dt
(
e−t − e−3t) = 3e−3t − e−t

Working in the s-domain, we have the Laplace transforms of the unit-step input, the
output, and the transfer function,

X(s)= 1

s
, Y(s)= 1

s+ 1
− 1

s+ 3
= 2

s2 + 4s+ 3

H(s)= Y(s)
X(s)

= 2s
s2 + 4s+ 3

= 3

s+ 3
− 1

s+ 1

so that the causal Laplace inverse is,

h(t)= [3e−3t − e−t]u(t)
The symbolic toolbox calculation is as follows,
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syms s t
X = 1/s;
y = exp(-t)-exp(-3*t);
Y = laplace(y) % Y = 1/(s + 1) - 1/(s + 3)
H = collect(Y/X) % H = (2*s)/(s^2 + 4*s + 3)
H = partfrac(H) % H = 3/(s + 3) - 1/(s + 1)
h = ilaplace(H) % h = 3*exp(-3*t) - exp(-t)

(b) From the Laplace transforms of the input and output, we obtain H(s),

X(s)= 1

s+ 1
, Y(s)= 1

s+ 2
− 1

s+ 3
= 1

s2 + 5s+ 6

H(s)= Y(s)
X(s)

= s+ 1

s2 + 5s+ 6
= s+ 1

(s+ 2)(s+ 3)
= 2

s+ 3
− 1

s+ 2

with Laplace inverse,
h(t)= [2e−3t − e−2t]u(t)

The symbolic toolbox calculation is,

syms s t
x = exp(-t);
y = exp(-2*t)-exp(-3*t);
X = laplace(x) % X = 1/(s + 1)
Y = laplace(y) % Y = 1/(s + 2) - 1/(s + 3)
H = collect(Y/X) % H = (s + 1)/(s^2 + 5*s + 6)
H = partfrac(H) % 2/(s + 3) - 1/(s + 2)
h = ilaplace(H) % h = 2*exp(-3*t) - exp(-2*t)

(c) From Y(s)= H(s)X(s), we have, X(s)= Y(s)/H(s),

Y(s)= 1

(s+ 2)2
, H(s)= s+ 1

s2 + 5s+ 6
= s+ 1

(s+ 2)(s+ 3)

X(s)= Y(s)
H(s)

=
1

(s+ 2)2

s+ 1

(s+ 2)(s+ 3)

= s+ 3

(s+ 1)(s+ 2)
= 2

s+ 1
− 1

s+ 2

and inverting,
x(t)= [2e−t − e−2t]u(t)

The symbolic toolbox calculation is,

syms s t
y = t*exp(-2*t);
Y = laplace(y) % Y = 1/(s+2)^2
H = (s+1)/(s^2+5*s+6); % H = (s + 1)/((s + 2)*(s + 3))
X = simplify(Y/H) % X = (s + 3)/(s^2 + 3*s + 2)
X = prod(factor(X)) % X = (s + 3)/((s + 1)*(s + 2))
X = partfrac(X) % X = 2/(s + 1) - 1/(s + 2)
x = ilaplace(X) % x = 2*exp(-t) - exp(-2*t)

Since the system is linear time-invariant, if x(t) causes y(t), then, x(t − t0) will cause
y(t − t0), thus, since the output is delayed by t0 = 5 time units, we must have the same
delay at the input, that is,

x(t − 5)= [2e−(t−5) − e−2(t−5)]u(t − 5)
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Appendix

A quick way of determining the impulse response h(t) of an LCCDE system in the time domain is
the so-called impulse matching method.† To explain it, consider a 2nd order proper system described
by the differential equation,

ÿ(t)+a1 ẏ(t)+a2y(t)= b0 ẍ(t)+b1 ẋ(t)+b2x(t)

(D2 + a1D+ a2)y(t)= (b0D2 + b1D+ b2)x(t)
(47)

where D = d/dt, and by defining the differential operators,

A(D)= D2 + a1D+ a2 , B(D)= b0D2 + b1D+ b2

then, Eq. (47) can be written compactly in the form,

A(D)y(t)= B(D)x(t)
The impulse matching method states that the causal impulse response of such system is given

by the following operation, for t ≥ 0,

h(t)= b0δ(t)+B(D)yn(t) (48)

where yn(t) is the causal solution of the all-pole homogeneous equation,

A(D)yn(t)= ÿn(t)+a1 ẏn(t)+a2yn(t)= 0 (49)

subject to the special initial conditions, yn(0−)= 0 and ẏn(0−)= 1. To verify this result, let us take
Laplace transforms of both sides of (49) and use the standard transform properties for the higher
derivatives, imposing the assumed initial conditions,

yn(t)
L−→ Yn(s)

ẏn(t)
L−→ sYn(s)−yn(0−)= sYn(s)

ÿn(t)
L−→ s2Yn(s)−syn(0−)−ẏn(0−)= s2Yn(s)−1

(50)

Then, Eq. (49) transforms into,

s2Yn(s)−1+ a1sYn(s)+a2Yn(s)= 0 ⇒ Yn(s)= 1

s2 + a1s+ a2
= 1

A(s)
Given yn(t), and applying the same transform properties to the second term of (48), we verify

that the Laplace transform of h(t) defined by (48) is indeed the correct one, H(s)= B(s)/A(s).
More explicitly, we have,

h(t) = b0δ(t)+
(
b0D2 + b1D+ b2

)
yn(t)= b0δ(t)+b0 ÿn(t)+b1 ẏn(t)+b2yn(t) ⇒

H(s) = b0 + b0
(
s2Yn(s)−1

)+ b1sYn(s)+b2Yn(s)= b0 + b0s2Yn(s)−b0 + b1sYn(s)+b2Yn(s)

= b0s2Yn(s)+b1sYn(s)+b2Yn(s)=
(
b0s2 + bss+ b2)Yn(s)= b0s2 + b1s+ b2

s2 + a1s+ a2
= B(s)
A(s)

The method generalizes to higher order (proper) LCCDEs, for example, for an Mth order system,

A(D) = DM + a1DM−1 + a2DM−2 + · · · + aM
B(D) = b0DM + b1DM−1 + b2DM−2 + · · · + bM

the impulse response h(t) is given by Eq. (48) for t ≥ 0, where yn(t) is the solution of the all-pole
homogeneous equation,

A(D)yn(t)= 0

subject to: yn(0−)= ẏn(0−)= · · · = y(M−2)
n (0−)= 0 , y(M−1)

n (0−)= 1
(51)

†B. P. Lathi, Linear Systems & Signals, 2nd ed., Oxford University Press, 2005.
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